|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
- | ==Crystal structure of red kidney bean purple acid phosphatase in complex with adenosine diphosphate metavanadate== | + | ==Structural Elements that Modulate the Substrate Specificity of Plant Purple Acid Phosphatases== |
| <StructureSection load='6py9' size='340' side='right'caption='[[6py9]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='6py9' size='340' side='right'caption='[[6py9]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6py9]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Phaseolus_vulgaris Phaseolus vulgaris]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PY9 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6PY9 FirstGlance]. <br> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PY9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PY9 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AD9:ADP+METAVANADATE'>AD9</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=P4J:[(2~{R},3~{R},4~{R},5~{S})-2-(5-azanylimidazol-1-yl)-4-[[bis(oxidanyl)-[tris(oxidanyl)vanadiooxy]vanadio]oxy-bis(oxidanyl)vanadio]oxy-5-[[bis(oxidanyl)-[tris(oxidanyl)vanadiooxy]vanadio]oxymethyl]oxolan-3-yl]oxy-tris(oxidanyl)vanadium'>P4J</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Acid_phosphatase Acid phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.2 3.1.3.2] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=AD9:ADP+METAVANADATE'>AD9</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=P4J:[(2~{R},3~{R},4~{R},5~{S})-2-(5-azanylimidazol-1-yl)-4-[[bis(oxidanyl)-[tris(oxidanyl)vanadiooxy]vanadio]oxy-bis(oxidanyl)vanadio]oxy-5-[[bis(oxidanyl)-[tris(oxidanyl)vanadiooxy]vanadio]oxymethyl]oxolan-3-yl]oxy-tris(oxidanyl)vanadium'>P4J</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6py9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6py9 OCA], [http://pdbe.org/6py9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6py9 RCSB], [http://www.ebi.ac.uk/pdbsum/6py9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6py9 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6py9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6py9 OCA], [https://pdbe.org/6py9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6py9 RCSB], [https://www.ebi.ac.uk/pdbsum/6py9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6py9 ProSAT]</span></td></tr> |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 17: |
Line 17: |
| </div> | | </div> |
| <div class="pdbe-citations 6py9" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6py9" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Acid phosphatase 3D structures|Acid phosphatase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Acid phosphatase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Phaseolus vulgaris]]
| + | [[Category: Feder D]] |
- | [[Category: Feder, D]] | + | [[Category: Furtado A]] |
- | [[Category: Furtado, A]] | + | [[Category: Guddat LW]] |
- | [[Category: Guddat, L W]] | + | [[Category: Henry RJ]] |
- | [[Category: Henry, R J]] | + | [[Category: McGeary RP]] |
- | [[Category: McGeary, R P]] | + | [[Category: Mitic N]] |
- | [[Category: Mitic, N]] | + | [[Category: Schenk G]] |
- | [[Category: Schenk, G]] | + | [[Category: Schmidt S]] |
- | [[Category: Schmidt, S]] | + | [[Category: Schulz BL]] |
- | [[Category: Schulz, B L]] | + | |
- | [[Category: Agricultural biotechnology]]
| + | |
- | [[Category: Atpase]]
| + | |
- | [[Category: Catalysis]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Metal binding protein]]
| + | |
- | [[Category: Metallohydrolase]]
| + | |
- | [[Category: Phytase]]
| + | |
- | [[Category: Purple acid phosphatase]]
| + | |
| Structural highlights
Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.2Å |
Ligands: | , , , , , , , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Publication Abstract from PubMed
Phosphate acquisition by plants is an essential process that is directly implicated in the optimization of crop yields. Purple acid phosphatases (PAPs) are ubiquitous metalloenzymes, which catalyze the hydrolysis of a wide range of phosphate esters and anhydrides. While some plant PAPs display a preference for ATP as the substrate, others are efficient in hydrolyzing phytate or 2-phosphoenolpyruvate (PEP). PAP from red kidney bean (rkbPAP) is an efficient ATP- and ADPase, but has no activity towards phytate. Crystal structures of this enzyme in complex with ATP analogues (to 2.20 and 2.60 A resolution, respectively) complement the recent structure of rkbPAP with a bound ADP analogue (ChemBioChem 20 (2019) 1536). Together these complexes provide the first structural insight of a PAP in complex with molecules that mimic biologically relevant substrates. Homology modeling was used to generate three-dimensional structures for the active sites of PAPs from tobacco (NtPAP) and thale cress (AtPAP26) that are efficient in hydrolyzing phytate and PEP as preferred substrates, respectively. The combining of crystallographic data, substrate docking simulations and a phylogenetic analysis of 49 plant PAP sequences (including the first PAP sequences reported from Eucalyptus) resulted in the identification of several active site residues that are important in defining the substrate specificities of plant PAPs; of particular relevance is the identification of a motif ("REKA") that is characteristic for plant PAPs that possess phytase activity. These results may inform bioengineering studies aimed at identifying and incorporating suitable plant PAP genes into crops to improve phosphorus acquisition and use efficiency. Organic phosphorus sources increasingly supplement or replace inorganic fertilizer, and efficient phosphorus use of crops will lower the environmental footprint of agriculture while enhancing food production.
Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops.,Feder D, McGeary RP, Mitic N, Lonhienne T, Furtado A, Schulz BL, Henry RJ, Schmidt S, Guddat LW, Schenk G Plant Sci. 2020 May;294:110445. doi: 10.1016/j.plantsci.2020.110445. Epub 2020, Feb 14. PMID:32234228[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Feder D, McGeary RP, Mitic N, Lonhienne T, Furtado A, Schulz BL, Henry RJ, Schmidt S, Guddat LW, Schenk G. Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops. Plant Sci. 2020 May;294:110445. doi: 10.1016/j.plantsci.2020.110445. Epub 2020, Feb 14. PMID:32234228 doi:http://dx.doi.org/10.1016/j.plantsci.2020.110445
|