6z3c
From Proteopedia
(Difference between revisions)
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | ==RgNanOx== | + | ==High resolution structure of RgNanOx== |
- | <StructureSection load='6z3c' size='340' side='right'caption='[[6z3c]]' scene=''> | + | <StructureSection load='6z3c' size='340' side='right'caption='[[6z3c]], [[Resolution|resolution]] 1.74Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Z3C OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[6z3c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ruminococcus_gnavus Ruminococcus gnavus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Z3C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6Z3C FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.74Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6z3c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6z3c OCA], [https://pdbe.org/6z3c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6z3c RCSB], [https://www.ebi.ac.uk/pdbsum/6z3c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6z3c ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/A0A2N5NNS3_RUMGN A0A2N5NNS3_RUMGN] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD(+) regeneration. The crystal structure of RgNanOx in complex with the NAD(+) cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli. | ||
+ | |||
+ | Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria.,Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N J Biol Chem. 2020 Oct 2;295(40):13724-13736. doi: 10.1074/jbc.RA120.014454. Epub , 2020 Jul 15. PMID:32669363<ref>PMID:32669363</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6z3c" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: | + | [[Category: Lee MO]] |
+ | [[Category: Naismith JH]] |
Current revision
High resolution structure of RgNanOx
|