|
|
Line 3: |
Line 3: |
| <StructureSection load='5jbf' size='340' side='right'caption='[[5jbf]], [[Resolution|resolution]] 2.19Å' scene=''> | | <StructureSection load='5jbf' size='340' side='right'caption='[[5jbf]], [[Resolution|resolution]] 2.19Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5jbf]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_23272 Atcc 23272]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JBF OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5JBF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5jbf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Limosilactobacillus_reuteri Limosilactobacillus reuteri]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JBF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5JBF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CEX:ALPHA-D-GLUCOPYRANOSYL-(1- 4)-ALPHA-D-GLUCOPYRANOSYL-(1- 4)-ALPHA-D-GLUCOPYRANOSYL-(1- 4)-ALPHA-D-GLUCOPYRANOSYL-(1- 4)-ALPHA-D-GLUCOPYRANOSE'>CEX</scene>, <scene name='pdbligand=MAL:MALTOSE'>MAL</scene>, <scene name='pdbligand=MLR:MALTOTRIOSE'>MLR</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.19Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dextransucrase Dextransucrase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.5 2.4.1.5] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=PRD_900001:alpha-maltose'>PRD_900001</scene>, <scene name='pdbligand=PRD_900009:alpha-maltotriose'>PRD_900009</scene>, <scene name='pdbligand=PRD_900030:alpha-maltopentaose'>PRD_900030</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5jbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jbf OCA], [http://pdbe.org/5jbf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5jbf RCSB], [http://www.ebi.ac.uk/pdbsum/5jbf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5jbf ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5jbf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jbf OCA], [https://pdbe.org/5jbf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5jbf RCSB], [https://www.ebi.ac.uk/pdbsum/5jbf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5jbf ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q5SBM0_LIMRT Q5SBM0_LIMRT] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 23272]] | |
- | [[Category: Dextransucrase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bai, Y]] | + | [[Category: Limosilactobacillus reuteri]] |
- | [[Category: Dijkhuizen, L]] | + | [[Category: Bai Y]] |
- | [[Category: Dijkstra, B W]] | + | [[Category: Dijkhuizen L]] |
- | [[Category: Gangoiti-Munecas, J]] | + | [[Category: Dijkstra BW]] |
- | [[Category: Pijning, T]] | + | [[Category: Gangoiti-Munecas J]] |
- | [[Category: 6-alpha-glucanotransferase]]
| + | [[Category: Pijning T]] |
- | [[Category: Gh70]]
| + | |
- | [[Category: Starch conversion]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
5jbf is a 2 chain structure with sequence from Limosilactobacillus reuteri. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.19Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
Q5SBM0_LIMRT
Publication Abstract from PubMed
Food processing and refining has dramatically changed the human diet, but little is known about whether this affected the evolution of enzymes in human microbiota. We present evidence that glycoside hydrolase family 70 (GH70) glucansucrases from lactobacilli, synthesizing alpha-glucan-type extracellular polysaccharides from sucrose, likely evolved from GH13 starch-acting alpha-amylases, via GH70 4,6-alpha-glucanotransferases. The crystal structure of a 4,6-alpha-glucanotransferase explains the mode of action and unique product specificity of these enzymes. While the alpha-amylase substrate-binding scaffold is retained, active-site loops adapted to favor transglycosylation over hydrolysis; the structure also gives clues as to how 4,6-alpha-glucanotransferases may have evolved further toward sucrose utilization instead of starch. Further supported by genomic, phylogenetic, and in vivo studies, we propose that dietary changes involving starch (and starch derivatives) and sucrose intake were critical factors during the evolution of 4,6-alpha-GTs and glucansucrases from alpha-amylases, allowing oral bacteria to produce extracellular polymers that contribute to biofilm formation from different substrates.
Crystal Structure of 4,6-alpha-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from alpha-Amylases in Oral Bacteria.,Bai Y, Gangoiti J, Dijkstra BW, Dijkhuizen L, Pijning T Structure. 2016 Dec 21. pii: S0969-2126(16)30390-2. doi:, 10.1016/j.str.2016.11.023. PMID:28065507[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bai Y, Gangoiti J, Dijkstra BW, Dijkhuizen L, Pijning T. Crystal Structure of 4,6-alpha-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from alpha-Amylases in Oral Bacteria. Structure. 2016 Dec 21. pii: S0969-2126(16)30390-2. doi:, 10.1016/j.str.2016.11.023. PMID:28065507 doi:http://dx.doi.org/10.1016/j.str.2016.11.023
|