We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

1btg

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:21, 6 November 2024) (edit) (undo)
 
(13 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1btg.gif|left|200px]]
 
-
<!--
+
==CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND==
-
The line below this paragraph, containing "STRUCTURE_1btg", creates the "Structure Box" on the page.
+
<StructureSection load='1btg' size='340' side='right'caption='[[1btg]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[1btg]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BTG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BTG FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
{{STRUCTURE_1btg| PDB=1btg | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1btg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1btg OCA], [https://pdbe.org/1btg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1btg RCSB], [https://www.ebi.ac.uk/pdbsum/1btg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1btg ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/NGF_MOUSE NGF_MOUSE] Nerve growth factor is important for the development and maintenance of the sympathetic and sensory nervous systems. Extracellular ligand for the NTRK1 and NGFR receptors, activates cellular signaling cascades through those receptor tyrosine kinase to regulate neuronal proliferation, differentiation and survival.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bt/1btg_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1btg ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Murine beta-nerve growth factor (beta NGF) is a 118 amino acid residue polypeptide which, as a functional dimer, plays an important role in the survival and development of certain neuronal populations. The structure of the bis-desocta1-8 form of murine beta NGF has been determined in two different crystal modifications using X-ray methods. The two crystal forms, with space groups P2(1)2(1)2(1) and C2, were grown from 18 to 20% polyethylene glycol 8000 and 100 mM Pipes (pH 6.1) with zinc acetate concentrations of 1 mM and 100 mM, respectively. The C2 structure was solved by multiple isomorphous replacement using four heavy-atom derivatives and was refined to a crystallographic residual of 17.9% and 2.5 A resolution. The crystals contain three beta NGF monomers per asymmetric unit. Two monomers form a dimer related by a non-crystallographic 2-fold axis of symmetry. The third monomer also forms a dimer that is very similar, but with a crystallography related monomer as a partner. The electron density clearly defines residues 12 through 115 for all three monomers but the extreme N and C-terminal residues (9 to 11, 116 to 118) are ill defined in some cases. The P2(1)2(1)2(1) structure was solved by molecular replacement using the C2 structure as a search model and was refined to a crystallographic residual of 19.7% at 2.8 A resolution. This crystal form contains two monomers per asymmetric unit, again arranged as a non-crystallographic 2-fold-related dimer. The N and c termini are also variably defined. The core of each of the five monomers, which forms a cysteine knot motif, is very similar in all structures. Also, the dimer structures are very similar to one another, whether the monomers are related by crystallographic or non-crystallographic symmetry. However, three of the four loop regions that extend from the core of each monomer display substantial variability in conformation, even between monomers of the same dimer. This structural variability in the putative receptor binding regions suggests that structural malleability might be important in allowing the ligands to bind to different receptors with different affinities.(ABSTRACT TRUNCATED AT 400 WORDS)
-
'''CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND'''
+
Nerve growth factor in different crystal forms displays structural flexibility and reveals zinc binding sites.,Holland DR, Cousens LS, Meng W, Matthews BW J Mol Biol. 1994 Jun 10;239(3):385-400. PMID:8201620<ref>PMID:8201620</ref>
-
 
+
-
 
+
-
==Overview==
+
-
Murine beta-nerve growth factor (beta NGF) is a 118 amino acid residue polypeptide which, as a functional dimer, plays an important role in the survival and development of certain neuronal populations. The structure of the bis-desocta1-8 form of murine beta NGF has been determined in two different crystal modifications using X-ray methods. The two crystal forms, with space groups P2(1)2(1)2(1) and C2, were grown from 18 to 20% polyethylene glycol 8000 and 100 mM Pipes (pH 6.1) with zinc acetate concentrations of 1 mM and 100 mM, respectively. The C2 structure was solved by multiple isomorphous replacement using four heavy-atom derivatives and was refined to a crystallographic residual of 17.9% and 2.5 A resolution. The crystals contain three beta NGF monomers per asymmetric unit. Two monomers form a dimer related by a non-crystallographic 2-fold axis of symmetry. The third monomer also forms a dimer that is very similar, but with a crystallography related monomer as a partner. The electron density clearly defines residues 12 through 115 for all three monomers but the extreme N and C-terminal residues (9 to 11, 116 to 118) are ill defined in some cases. The P2(1)2(1)2(1) structure was solved by molecular replacement using the C2 structure as a search model and was refined to a crystallographic residual of 19.7% at 2.8 A resolution. This crystal form contains two monomers per asymmetric unit, again arranged as a non-crystallographic 2-fold-related dimer. The N and c termini are also variably defined. The core of each of the five monomers, which forms a cysteine knot motif, is very similar in all structures. Also, the dimer structures are very similar to one another, whether the monomers are related by crystallographic or non-crystallographic symmetry. However, three of the four loop regions that extend from the core of each monomer display substantial variability in conformation, even between monomers of the same dimer. This structural variability in the putative receptor binding regions suggests that structural malleability might be important in allowing the ligands to bind to different receptors with different affinities.(ABSTRACT TRUNCATED AT 400 WORDS)
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
1BTG is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BTG OCA].
+
</div>
 +
<div class="pdbe-citations 1btg" style="background-color:#fffaf0;"></div>
-
==Reference==
+
==See Also==
-
Nerve growth factor in different crystal forms displays structural flexibility and reveals zinc binding sites., Holland DR, Cousens LS, Meng W, Matthews BW, J Mol Biol. 1994 Jun 10;239(3):385-400. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/8201620 8201620]
+
*[[Nerve growth factor|Nerve growth factor]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
-
[[Category: Single protein]]
+
[[Category: Holland DR]]
-
[[Category: Holland, D R.]]
+
[[Category: Matthews BW]]
-
[[Category: Matthews, B W.]]
+
-
[[Category: Nerve]]
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 11:56:12 2008''
+

Current revision

CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND

PDB ID 1btg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools