6ope

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:14, 11 October 2023) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
==Crystal structure of tRNA^ Ala(GGC) U32-A38 bound to near-cognate 70S A site==
==Crystal structure of tRNA^ Ala(GGC) U32-A38 bound to near-cognate 70S A site==
-
<StructureSection load='6ope' size='340' side='right'caption='[[6ope]]' scene=''>
+
<StructureSection load='6ope' size='340' side='right'caption='[[6ope]], [[Resolution|resolution]] 3.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OPE OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6OPE FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6ope]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OPE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6OPE FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6ope FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ope OCA], [http://pdbe.org/6ope PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ope RCSB], [http://www.ebi.ac.uk/pdbsum/6ope PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ope ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ope FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ope OCA], [https://pdbe.org/6ope PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ope RCSB], [https://www.ebi.ac.uk/pdbsum/6ope PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ope ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/RS7_THET8 RS7_THET8] One of the primary rRNA binding proteins, it binds directly to 3'-end of the 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center. Binds mRNA and the E site tRNA blocking its exit path in the ribosome. This blockage implies that this section of the ribosome must be able to move to release the deacetylated tRNA.[HAMAP-Rule:MF_00480_B]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.
 +
 +
Disruption of evolutionarily correlated tRNA elements impairs accurate decoding.,Nguyen HA, Sunita S, Dunham CM Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16333-16338. doi:, 10.1073/pnas.2004170117. Epub 2020 Jun 29. PMID:32601241<ref>PMID:32601241</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6ope" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
 +
[[Category: Thermus thermophilus HB8]]
[[Category: Dunham CM]]
[[Category: Dunham CM]]
[[Category: Nguyen HA]]
[[Category: Nguyen HA]]
[[Category: Sunita S]]
[[Category: Sunita S]]

Current revision

Crystal structure of tRNA^ Ala(GGC) U32-A38 bound to near-cognate 70S A site

PDB ID 6ope

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools