|
|
Line 3: |
Line 3: |
| <StructureSection load='5k33' size='340' side='right'caption='[[5k33]], [[Resolution|resolution]] 3.30Å' scene=''> | | <StructureSection load='5k33' size='340' side='right'caption='[[5k33]], [[Resolution|resolution]] 3.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5k33]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K33 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5K33 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5k33]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K33 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K33 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.3Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5k33 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k33 OCA], [http://pdbe.org/5k33 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5k33 RCSB], [http://www.ebi.ac.uk/pdbsum/5k33 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5k33 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k33 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k33 OCA], [https://pdbe.org/5k33 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k33 RCSB], [https://www.ebi.ac.uk/pdbsum/5k33 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k33 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/IGHG1_HUMAN IGHG1_HUMAN]] Defects in IGHG1 are a cause of multiple myeloma (MM) [MIM:[http://omim.org/entry/254500 254500]]. MM is a malignant tumor of plasma cells usually arising in the bone marrow and characterized by diffuse involvement of the skeletal system, hyperglobulinemia, Bence-Jones proteinuria and anemia. Complications of multiple myeloma are bone pain, hypercalcemia, renal failure and spinal cord compression. The aberrant antibodies that are produced lead to impaired humoral immunity and patients have a high prevalence of infection. Amyloidosis may develop in some patients. Multiple myeloma is part of a spectrum of diseases ranging from monoclonal gammopathy of unknown significance (MGUS) to plasma cell leukemia. Note=A chromosomal aberration involving IGHG1 is found in multiple myeloma. Translocation t(11;14)(q13;q32) with the IgH locus. Translocation t(11;14)(q13;q32) with CCND1; translocation t(4;14)(p16.3;q32.3) with FGFR3; translocation t(6;14)(p25;q32) with IRF4. [[http://www.uniprot.org/uniprot/ERBB2_HUMAN ERBB2_HUMAN]] Defects in ERBB2 are a cause of hereditary diffuse gastric cancer (HDGC) [MIM:[http://omim.org/entry/137215 137215]]. A cancer predisposition syndrome with increased susceptibility to diffuse gastric cancer. Diffuse gastric cancer is a malignant disease characterized by poorly differentiated infiltrating lesions resulting in thickening of the stomach. Malignant tumors start in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. Defects in ERBB2 are involved in the development of glioma (GLM) [MIM:[http://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Defects in ERBB2 are a cause of susceptibility to ovarian cancer (OC) [MIM:[http://omim.org/entry/167000 167000]]. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Defects in ERBB2 may be a cause of lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in ERBB2 are a cause of gastric cancer (GASC) [MIM:[http://omim.org/entry/613659 613659]]. A malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease. Note=Chromosomal aberrations involving ERBB2 may be a cause gastric cancer. Deletions within 17q12 region producing fusion transcripts with CDK12, leading to CDK12-ERBB2 fusion leading to truncated CDK12 protein not in-frame with ERBB2. | + | [https://www.uniprot.org/uniprot/IGHG1_HUMAN IGHG1_HUMAN] Defects in IGHG1 are a cause of multiple myeloma (MM) [MIM:[https://omim.org/entry/254500 254500]. MM is a malignant tumor of plasma cells usually arising in the bone marrow and characterized by diffuse involvement of the skeletal system, hyperglobulinemia, Bence-Jones proteinuria and anemia. Complications of multiple myeloma are bone pain, hypercalcemia, renal failure and spinal cord compression. The aberrant antibodies that are produced lead to impaired humoral immunity and patients have a high prevalence of infection. Amyloidosis may develop in some patients. Multiple myeloma is part of a spectrum of diseases ranging from monoclonal gammopathy of unknown significance (MGUS) to plasma cell leukemia. Note=A chromosomal aberration involving IGHG1 is found in multiple myeloma. Translocation t(11;14)(q13;q32) with the IgH locus. Translocation t(11;14)(q13;q32) with CCND1; translocation t(4;14)(p16.3;q32.3) with FGFR3; translocation t(6;14)(p25;q32) with IRF4. |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ERBB2_HUMAN ERBB2_HUMAN]] Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization.<ref>PMID:10358079</ref> <ref>PMID:15380516</ref> <ref>PMID:16794579</ref> <ref>PMID:19372587</ref> <ref>PMID:20937854</ref> <ref>PMID:21555369</ref> In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.<ref>PMID:10358079</ref> <ref>PMID:15380516</ref> <ref>PMID:16794579</ref> <ref>PMID:19372587</ref> <ref>PMID:20937854</ref> <ref>PMID:21555369</ref> | + | [https://www.uniprot.org/uniprot/IGHG1_HUMAN IGHG1_HUMAN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Receptor protein-tyrosine kinase]]
| + | [[Category: Djinovic-Carugo K]] |
- | [[Category: Djinovic-Carugo, K]] | + | [[Category: Goritzer K]] |
- | [[Category: Goritzer, K]] | + | [[Category: Humm A]] |
- | [[Category: Humm, A]] | + | [[Category: Lobner E]] |
- | [[Category: Lobner, E]] | + | [[Category: Mlynek G]] |
- | [[Category: Mlynek, G]] | + | [[Category: Obinger C]] |
- | [[Category: Obinger, C]] | + | |
- | [[Category: Antibody engineering]]
| + | |
- | [[Category: Cell surface receptor]]
| + | |
- | [[Category: Ch3 domain]]
| + | |
- | [[Category: Erbb-2]]
| + | |
- | [[Category: Fc fragment]]
| + | |
- | [[Category: Fcab]]
| + | |
- | [[Category: Glycosylation]]
| + | |
- | [[Category: Her2/neu]]
| + | |
- | [[Category: Human epidermal growth factor receptor 2]]
| + | |
- | [[Category: Immune system]]
| + | |
- | [[Category: Immunoglobulin g1]]
| + | |
| Structural highlights
Disease
IGHG1_HUMAN Defects in IGHG1 are a cause of multiple myeloma (MM) [MIM:254500. MM is a malignant tumor of plasma cells usually arising in the bone marrow and characterized by diffuse involvement of the skeletal system, hyperglobulinemia, Bence-Jones proteinuria and anemia. Complications of multiple myeloma are bone pain, hypercalcemia, renal failure and spinal cord compression. The aberrant antibodies that are produced lead to impaired humoral immunity and patients have a high prevalence of infection. Amyloidosis may develop in some patients. Multiple myeloma is part of a spectrum of diseases ranging from monoclonal gammopathy of unknown significance (MGUS) to plasma cell leukemia. Note=A chromosomal aberration involving IGHG1 is found in multiple myeloma. Translocation t(11;14)(q13;q32) with the IgH locus. Translocation t(11;14)(q13;q32) with CCND1; translocation t(4;14)(p16.3;q32.3) with FGFR3; translocation t(6;14)(p25;q32) with IRF4.
Function
IGHG1_HUMAN
Publication Abstract from PubMed
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is an attractive scaffold for the design of novel therapeutics. Upon engineering the C-terminal loops in the CH3 domains, Fcabs (Fc domain with antigen-binding sites) can be designed. We present the first crystal structures of Fcabs, i.e., of the HER2-binding clone H10-03-6 having the AB and EF loop engineered and the stabilized version STAB19 derived by directed evolution. Comparison with the crystal structure of the Fc wild-type protein reveals conservation of the overall domain structures but significant differences in EF-loop conformations. Furthermore, we present the first Fcab-antigen complex structures demonstrating the interaction between the engineered Fcab loops with domain IV of HER2. The crystal structures of the STAB19-HER2 and H10-03-6-HER2 complexes together with analyses by isothermal titration calorimetry, SEC-MALS, and fluorescence correlation spectroscopy show that one homodimeric Fcab binds two HER2 molecules following a negative cooperative binding behavior.
Fcab-HER2 Interaction: a Menage a Trois. Lessons from X-Ray and Solution Studies.,Lobner E, Humm AS, Goritzer K, Mlynek G, Puchinger MG, Hasenhindl C, Ruker F, Traxlmayr MW, Djinovic-Carugo K, Obinger C Structure. 2017 Jun 6;25(6):878-889.e5. doi: 10.1016/j.str.2017.04.014. Epub 2017, May 18. PMID:28528777[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lobner E, Humm AS, Goritzer K, Mlynek G, Puchinger MG, Hasenhindl C, Ruker F, Traxlmayr MW, Djinovic-Carugo K, Obinger C. Fcab-HER2 Interaction: a Menage a Trois. Lessons from X-Ray and Solution Studies. Structure. 2017 Jun 6;25(6):878-889.e5. doi: 10.1016/j.str.2017.04.014. Epub 2017, May 18. PMID:28528777 doi:http://dx.doi.org/10.1016/j.str.2017.04.014
|