|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='2w79' size='340' side='right'caption='[[2w79]], [[Resolution|resolution]] 1.85Å' scene=''> | | <StructureSection load='2w79' size='340' side='right'caption='[[2w79]], [[Resolution|resolution]] 1.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2w79]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_43589 Atcc 43589]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2W79 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=2W79 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2w79]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermotoga_maritima Thermotoga maritima]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2W79 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2W79 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2cff|2cff]], [[1qo2|1qo2]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/1-(5-phosphoribosyl)-5-_((5-phosphoribosylamino)methylideneamino)imidazole-4-carboxamide_isomerase 1-(5-phosphoribosyl)-5- ((5-phosphoribosylamino)methylideneamino)imidazole-4-carboxamide isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.3.1.16 5.3.1.16] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2w79 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2w79 OCA], [https://pdbe.org/2w79 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2w79 RCSB], [https://www.ebi.ac.uk/pdbsum/2w79 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2w79 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=2w79 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2w79 OCA], [http://pdbe.org/2w79 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2w79 RCSB], [http://www.ebi.ac.uk/pdbsum/2w79 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2w79 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/HIS4_THEMA HIS4_THEMA] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 43589]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Claren, J]] | + | [[Category: Thermotoga maritima]] |
- | [[Category: Hocker, B]] | + | [[Category: Claren J]] |
- | [[Category: Malisi, C]] | + | [[Category: Hocker B]] |
- | [[Category: Sterner, R]] | + | [[Category: Malisi C]] |
- | [[Category: Amino-acid biosynthesis]]
| + | [[Category: Sterner R]] |
- | [[Category: Histidine biosynthesis]]
| + | |
- | [[Category: Isomerase]]
| + | |
| Structural highlights
Function
HIS4_THEMA
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The generation of high levels of new catalytic activities on natural and artificial protein scaffolds is a major goal of enzyme engineering. Here, we used random mutagenesis and selection in vivo to establish a sugar isomerisation reaction on both a natural (betaalpha)(8)-barrel enzyme and a catalytically inert chimeric (betaalpha)(8)-barrel scaffold, which was generated by the recombination of 2 (betaalpha)(4)-half barrels. The best evolved variants show turnover numbers and substrate affinities that are similar to those of wild-type enzymes catalyzing the same reaction. The determination of the crystal structure of the most proficient variant allowed us to model the substrate sugar in the novel active site and to elucidate the mechanistic basis of the newly established activity. The results demonstrate that natural and inert artificial protein scaffolds can be converted into highly proficient enzymes in the laboratory, and provide insights into the mechanisms of enzyme evolution.
Establishing wild-type levels of catalytic activity on natural and artificial ({beta}{alpha})8-barrel protein scaffolds.,Claren J, Malisi C, Hocker B, Sterner R Proc Natl Acad Sci U S A. 2009 Feb 23. PMID:19237570[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Claren J, Malisi C, Hocker B, Sterner R. Establishing wild-type levels of catalytic activity on natural and artificial ({beta}{alpha})8-barrel protein scaffolds. Proc Natl Acad Sci U S A. 2009 Feb 23. PMID:19237570 doi:0810342106
|