6ysh

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (13:34, 24 January 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 6ysh is ON HOLD until Paper Publication
+
==Lamin A 1-70 coil1A dimer stabilized by C-terminal capping==
 +
<StructureSection load='6ysh' size='340' side='right'caption='[[6ysh]], [[Resolution|resolution]] 2.83&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[6ysh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YSH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6YSH FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.83&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ysh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ysh OCA], [https://pdbe.org/6ysh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ysh RCSB], [https://www.ebi.ac.uk/pdbsum/6ysh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ysh ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/LMNA_HUMAN LMNA_HUMAN] Defects in LMNA are the cause of Emery-Dreifuss muscular dystrophy type 2, autosomal dominant (EDMD2) [MIM:[https://omim.org/entry/181350 181350]. A degenerative myopathy characterized by weakness and atrophy of muscle without involvement of the nervous system, early contractures of the elbows, Achilles tendons and spine, and cardiomyopathy associated with cardiac conduction defects.<ref>PMID:19933576</ref> <ref>PMID:10080180</ref> <ref>PMID:10739764</ref> <ref>PMID:10939567</ref> <ref>PMID:10908904</ref> <ref>PMID:11503164</ref> <ref>PMID:11792809</ref> <ref>PMID:12032588</ref> <ref>PMID:14684700</ref> <ref>PMID:12649505</ref> <ref>PMID:14985400</ref> <ref>PMID:15744034</ref> <ref>PMID:20848652</ref> Defects in LMNA are the cause of Emery-Dreifuss muscular dystrophy type 3, autosomal recessive (EDMD3) [MIM:[https://omim.org/entry/181350 181350]. Defects in LMNA are the cause of cardiomyopathy dilated type 1A (CMD1A) [MIM:[https://omim.org/entry/115200 115200]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:18606848</ref> <ref>PMID:11792809</ref> <ref>PMID:14684700</ref> <ref>PMID:10580070</ref> <ref>PMID:11561226</ref> <ref>PMID:12486434</ref> <ref>PMID:11897440</ref> <ref>PMID:12628721</ref> <ref>PMID:12920062</ref> <ref>PMID:15219508</ref> <ref>PMID:15140538</ref> <ref>PMID:16061563</ref> <ref>PMID:21846512</ref> Defects in LMNA are the cause of familial partial lipodystrophy type 2 (FPLD2) [MIM:[https://omim.org/entry/151660 151660]; also known as familial partial lipodystrophy Dunnigan type. A disorder characterized by the loss of subcutaneous adipose tissue in the lower parts of the body (limbs, buttocks, trunk). It is accompanied by an accumulation of adipose tissue in the face and neck causing a double chin, fat neck, or cushingoid appearance. Adipose tissue may also accumulate in the axillae, back, labia majora, and intraabdominal region. Affected patients are insulin-resistant and may develop glucose intolerance and diabetes mellitus after age 20 years, hypertriglyceridemia, and low levels of high density lipoprotein cholesterol.<ref>PMID:11792809</ref> <ref>PMID:10739751</ref> <ref>PMID:10587585</ref> <ref>PMID:10655060</ref> <ref>PMID:12015247</ref> <ref>PMID:12196663</ref> <ref>PMID:12629077</ref> <ref>PMID:17250669</ref> Defects in LMNA are the cause of limb-girdle muscular dystrophy type 1B (LGMD1B) [MIM:[https://omim.org/entry/159001 159001]. LGMD1B is an autosomal dominant degenerative myopathy with age-related atrioventricular cardiac conduction disturbances, dilated cardiomyopathy, and the absence of early contractures. LGMD1B is characterized by slowly progressive skeletal muscle weakness of the hip and shoulder girdles. Muscle biopsy shows mild dystrophic changes.<ref>PMID:12032588</ref> <ref>PMID:15744034</ref> <ref>PMID:10814726</ref> <ref>PMID:11525883</ref> <ref>PMID:12673789</ref> <ref>PMID:17136397</ref> Defects in LMNA are the cause of Charcot-Marie-Tooth disease type 2B1 (CMT2B1) [MIM:[https://omim.org/entry/605588 605588]. CMT2B1 is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathy or CMT1, and primary peripheral axonal neuropathy or CMT2. Neuropathies of the CMT2 group are characterized by signs of axonal regeneration in the absence of obvious myelin alterations, normal or slightly reduced nerve conduction velocities, and progressive distal muscle weakness and atrophy. CMT2B1 inheritance is autosomal recessive.<ref>PMID:11799477</ref> Defects in LMNA are the cause of Hutchinson-Gilford progeria syndrome (HGPS) [MIM:[https://omim.org/entry/176670 176670]. HGPS is a rare genetic disorder characterized by features reminiscent of marked premature aging. Note=HGPS is caused by the toxic accumulation of a mutant form of lamin-A/C. This mutant protein, called progerin, acts to deregulate mitosis and DNA damage signaling, leading to premature cell death and senescence. Progerin lacks the conserved ZMPSTE24/FACE1 cleavage site and therefore remains permanently farnesylated. Thus, although it can enter the nucleus and associate with the nuclear envelope, it cannot incorporate normally into the nuclear lamina.<ref>PMID:19933576</ref> <ref>PMID:12768443</ref> <ref>PMID:12927431</ref> <ref>PMID:12714972</ref> <ref>PMID:15286156</ref> <ref>PMID:15622532</ref> Defects in LMNA are the cause of cardiomyopathy dilated with hypergonadotropic hypogonadism (CMDHH) [MIM:[https://omim.org/entry/212112 212112]. A disorder characterized by the association of genital anomalies, hypergonadotropic hypogonadism and dilated cardiomyopathy. Patients can present other variable clinical manifestations including mental retardation, skeletal anomalies, scleroderma-like skin, graying and thinning of hair, osteoporosis. Dilated cardiomyopathy is characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Defects in LMNA are the cause of mandibuloacral dysplasia with type A lipodystrophy (MADA) [MIM:[https://omim.org/entry/248370 248370]. A disorder characterized by mandibular and clavicular hypoplasia, acroosteolysis, delayed closure of the cranial suture, progeroide appearance, partial alopecia, soft tissue calcinosis, joint contractures, and partial lipodystrophy with loss of subcutaneous fat from the extremities. Adipose tissue in the face, neck and trunk is normal or increased.<ref>PMID:12075506</ref> <ref>PMID:15998779</ref> <ref>PMID:16278265</ref> Defects in LMNA are a cause of lethal tight skin contracture syndrome (LTSCS) [MIM:[https://omim.org/entry/275210 275210]; also known as restrictive dermopathy (RD). Lethal tight skin contracture syndrome is a rare disorder mainly characterized by intrauterine growth retardation, tight and rigid skin with erosions, prominent superficial vasculature and epidermal hyperkeratosis, facial features (small mouth, small pinched nose and micrognathia), sparse/absent eyelashes and eyebrows, mineralization defects of the skull, thin dysplastic clavicles, pulmonary hypoplasia, multiple joint contractures and an early neonatal lethal course. Liveborn children usually die within the first week of life. The overall prevalence of consanguineous cases suggested an autosomal recessive inheritance.<ref>PMID:15317753</ref> Defects in LMNA are the cause of heart-hand syndrome Slovenian type (HHS-Slovenian) [MIM:[https://omim.org/entry/610140 610140]. Heart-hand syndrome (HHS) is a clinically and genetically heterogeneous disorder characterized by the co-occurrence of a congenital cardiac disease and limb malformations. Defects in LMNA are the cause of muscular dystrophy congenital LMNA-related (MDCL) [MIM:[https://omim.org/entry/613205 613205]. It is a form of congenital muscular dystrophy. Patients present at birth, or within the first few months of life, with hypotonia, muscle weakness and often with joint contractures.<ref>PMID:18551513</ref>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/MARE1_HUMAN MARE1_HUMAN] Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes cytoplasmic microtubule nucleation and elongation. May be involved in spindle function by stabilizing microtubules and anchoring them at centrosomes. May play a role in cell migration.<ref>PMID:12388762</ref> <ref>PMID:21646404</ref> <ref>PMID:16109370</ref> <ref>PMID:19632184</ref> [https://www.uniprot.org/uniprot/LMNA_HUMAN LMNA_HUMAN] Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane, which is thought to provide a framework for the nuclear envelope and may also interact with chromatin. Lamin A and C are present in equal amounts in the lamina of mammals. Plays an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics.<ref>PMID:20079404</ref> <ref>PMID:20458013</ref> Prelamin-A/C can accelerate smooth muscle cell senescence. It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence.<ref>PMID:20079404</ref> <ref>PMID:20458013</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
-
Authors:
+
Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions.,Stalmans G, Lilina AV, Vermeire PJ, Fiala J, Novak P, Strelkov SV Cells. 2020 Jul 7;9(7). pii: cells9071633. doi: 10.3390/cells9071633. PMID:32645958<ref>PMID:32645958</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 6ysh" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Lilina AV]]
 +
[[Category: Stalmans G]]
 +
[[Category: Strelkov SV]]

Current revision

Lamin A 1-70 coil1A dimer stabilized by C-terminal capping

PDB ID 6ysh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools