|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='2yob' size='340' side='right'caption='[[2yob]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='2yob' size='340' side='right'caption='[[2yob]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2yob]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YOB OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=2YOB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2yob]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YOB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2YOB FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1h0c|1h0c]], [[1j04|1j04]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=2yob FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yob OCA], [http://pdbe.org/2yob PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2yob RCSB], [http://www.ebi.ac.uk/pdbsum/2yob PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2yob ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2yob FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yob OCA], [https://pdbe.org/2yob PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2yob RCSB], [https://www.ebi.ac.uk/pdbsum/2yob PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2yob ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/SPYA_HUMAN SPYA_HUMAN]] Defects in AGXT are the cause of hyperoxaluria primary type 1 (HP1) [MIM:[http://omim.org/entry/259900 259900]]; also known as primary hyperoxaluria type I (PH1) and oxalosis I. HP1 is a rare autosomal recessive inborn error of glyoxylate metabolism characterized by increased excretion of oxalate and glycolate, and the progressive accumulation of insoluble calcium oxalate in the kidney and urinary tract.<ref>PMID:1703535</ref> <ref>PMID:2039493</ref> <ref>PMID:1349575</ref> <ref>PMID:1301173</ref> <ref>PMID:8101040</ref> <ref>PMID:9192270</ref> <ref>PMID:9604803</ref> <ref>PMID:10394939</ref> <ref>PMID:10453743</ref> <ref>PMID:10541294</ref> <ref>PMID:10862087</ref> <ref>PMID:10960483</ref> <ref>PMID:12559847</ref> <ref>PMID:12777626</ref> <ref>PMID:15253729</ref> <ref>PMID:15849466</ref> <ref>PMID:15961946</ref> <ref>PMID:15963748</ref> | + | [https://www.uniprot.org/uniprot/AGT1_HUMAN AGT1_HUMAN] Primary hyperoxaluria type 1. The disease is caused by variants affecting the gene represented in this entry. |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/AGT1_HUMAN AGT1_HUMAN] Peroxisomal aminotransferase that catalyzes the transamination of glyoxylate to glycine and contributes to the glyoxylate detoxification (PubMed:10960483, PubMed:12777626, PubMed:24055001, PubMed:23229545, PubMed:26149463). Also catalyzes the transamination between L-serine and pyruvate and contributes to gluconeogenesis from the L-serine metabolism (PubMed:10347152).<ref>PMID:10347152</ref> <ref>PMID:10960483</ref> <ref>PMID:12777626</ref> <ref>PMID:23229545</ref> <ref>PMID:24055001</ref> <ref>PMID:26149463</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 28: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Albert, A]] | + | [[Category: Albert A]] |
- | [[Category: Fabelo-Rosa, I]] | + | [[Category: Fabelo-Rosa I]] |
- | [[Category: Mesa-Torres, N]] | + | [[Category: Mesa-Torres N]] |
- | [[Category: Pey, A L]] | + | [[Category: Pey AL]] |
- | [[Category: Riverol, D]] | + | [[Category: Riverol D]] |
- | [[Category: Salido, E]] | + | [[Category: Salido E]] |
- | [[Category: Yunta, C]] | + | [[Category: Yunta C]] |
- | [[Category: Agxt folding and stability defect]]
| + | |
- | [[Category: Primary hyperoxaluria type i]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Disease
AGT1_HUMAN Primary hyperoxaluria type 1. The disease is caused by variants affecting the gene represented in this entry.
Function
AGT1_HUMAN Peroxisomal aminotransferase that catalyzes the transamination of glyoxylate to glycine and contributes to the glyoxylate detoxification (PubMed:10960483, PubMed:12777626, PubMed:24055001, PubMed:23229545, PubMed:26149463). Also catalyzes the transamination between L-serine and pyruvate and contributes to gluconeogenesis from the L-serine metabolism (PubMed:10347152).[1] [2] [3] [4] [5] [6]
Publication Abstract from PubMed
Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 A crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.
The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I.,Mesa-Torres N, Fabelo-Rosa I, Riverol D, Yunta C, Albert A, Salido E, Pey AL PLoS One. 2013 Aug 27;8(8):e71963. doi: 10.1371/journal.pone.0071963. PMID:24205397[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Xue HH, Sakaguchi T, Fujie M, Ogawa H, Ichiyama A. Flux of the L-serine metabolism in rabbit, human, and dog livers. Substantial contributions of both mitochondrial and peroxisomal serine:pyruvate/alanine:glyoxylate aminotransferase. J Biol Chem. 1999 Jun 4;274(23):16028-33. doi: 10.1074/jbc.274.23.16028. PMID:10347152 doi:http://dx.doi.org/10.1074/jbc.274.23.16028
- ↑ Lumb MJ, Danpure CJ. Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem. 2000 Nov 17;275(46):36415-22. PMID:10960483 doi:10.1074/jbc.M006693200
- ↑ Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7277-82. Epub 2003 May 30. PMID:12777626 doi:10.1073/pnas.1131968100
- ↑ Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem. 2013 Jan 25;288(4):2475-84. doi: 10.1074/jbc.M112.432617. Epub 2012 , Dec 10. PMID:23229545 doi:http://dx.doi.org/10.1074/jbc.M112.432617
- ↑ Oppici E, Roncador A, Montioli R, Bianconi S, Cellini B. Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase. Biochim Biophys Acta. 2013 Dec;1832(12):2277-88. doi:, 10.1016/j.bbadis.2013.09.002. Epub 2013 Sep 17. PMID:24055001 doi:http://dx.doi.org/10.1016/j.bbadis.2013.09.002
- ↑ Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1280-9. doi:, 10.1016/j.bbapap.2015.07.002. Epub 2015 Jul 3. PMID:26149463 doi:http://dx.doi.org/10.1016/j.bbapap.2015.07.002
- ↑ Mesa-Torres N, Fabelo-Rosa I, Riverol D, Yunta C, Albert A, Salido E, Pey AL. The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I. PLoS One. 2013 Aug 27;8(8):e71963. doi: 10.1371/journal.pone.0071963. PMID:24205397 doi:http://dx.doi.org/10.1371/journal.pone.0071963
|