|
|
| (16 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:1c8w.gif|left|200px]] | |
| | | | |
| - | <!-- | + | ==THR45GLY VARIANT OF RIBONUCLEASE A== |
| - | The line below this paragraph, containing "STRUCTURE_1c8w", creates the "Structure Box" on the page.
| + | <StructureSection load='1c8w' size='340' side='right'caption='[[1c8w]], [[Resolution|resolution]] 1.80Å' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | + | <table><tr><td colspan='2'>[[1c8w]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C8W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1C8W FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
| - | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
| - | {{STRUCTURE_1c8w| PDB=1c8w | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1c8w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1c8w OCA], [https://pdbe.org/1c8w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1c8w RCSB], [https://www.ebi.ac.uk/pdbsum/1c8w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1c8w ProSAT]</span></td></tr> |
| | + | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/RNAS1_BOVIN RNAS1_BOVIN] Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.<ref>PMID:7479688</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/c8/1c8w_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1c8w ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | Ribonuclease A (RNase A) catalyzes the cleavage of RNA after pyrimidine nucleotides. When bound in the active site, the base of a pyrimidine nucleotide forms hydrogen bonds with the side chain of Thr45. Here, the role of Thr45 was probed by using the wild-type enzyme, its T45G variant, X-ray diffraction analysis, and synthetic oligonucleotides as ligands and substrates. Catalytic specificity was determined with the fluorogenic substrate: 6-carboxyfluorescein approximately dArXdAdA approximately 6-carboxytetramethylrhodamine (6-FAM approximately dArXdAdA approximately 6-TAMRA), where X = C, U, A, or G. Wild-type RNase A cleaves 10(6)-fold faster when X = C than when X = A. Likewise, its affinity for the non-hydrolyzable oligonucleotide 6-FAM approximately d(CAA) is 50-fold greater than for 6-FAM approximately d(AAA). T45G RNase A cleaves 6-FAM approximately dArAdAdA approximately 6-TAMRA 10(2)-fold faster than does the wild-type enzyme. The structure of crystalline T45G RNase A, determined at 1.8-A resolution by X-ray diffraction analysis, does not reveal new potential interactions with a nucleobase. Indeed, the two enzymes have a similar affinity for 6-FAM approximately d(AAA). The importance of pentofuranosyl ring conformation to nucleotide specificity was probed with 6-FAM approximately d(AU(F)AA), where U(F) is 2'-deoxy-2'-fluorouridine. The conformation of the pentofuranosyl ring in dU(F) is known to be more similar to that in rU than dU. The affinity of wild-type RNase A for 6-FAM approximately d(AU(F)AA) is 50-fold lower than for 6-FAM approximately d(AUAA). This discrimination is lost in the T45G enzyme. Together, these data indicate that the side chain of Thr45 plays multiple roles-interacting favorably with pyrimidine nucleobases but unfavorably with purine nucleobases. Moreover, a ribose-like ring disfavors the interaction of Thr45 with a pyrimidine nucleobase, suggesting that Thr45 enhances catalysis by ground-state destabilization. |
| | | | |
| - | '''THR45GLY VARIANT OF RIBONUCLEASE A'''
| + | Excavating an active site: the nucleobase specificity of ribonuclease A.,Kelemen BR, Schultz LW, Sweeney RY, Raines RT Biochemistry. 2000 Nov 28;39(47):14487-94. PMID:11087402<ref>PMID:11087402</ref> |
| - | | + | |
| - | | + | |
| - | ==Overview==
| + | |
| - | Ribonuclease A (RNase A) catalyzes the cleavage of RNA after pyrimidine nucleotides. When bound in the active site, the base of a pyrimidine nucleotide forms hydrogen bonds with the side chain of Thr45. Here, the role of Thr45 was probed by using the wild-type enzyme, its T45G variant, X-ray diffraction analysis, and synthetic oligonucleotides as ligands and substrates. Catalytic specificity was determined with the fluorogenic substrate: 6-carboxyfluorescein approximately dArXdAdA approximately 6-carboxytetramethylrhodamine (6-FAM approximately dArXdAdA approximately 6-TAMRA), where X = C, U, A, or G. Wild-type RNase A cleaves 10(6)-fold faster when X = C than when X = A. Likewise, its affinity for the non-hydrolyzable oligonucleotide 6-FAM approximately d(CAA) is 50-fold greater than for 6-FAM approximately d(AAA). T45G RNase A cleaves 6-FAM approximately dArAdAdA approximately 6-TAMRA 10(2)-fold faster than does the wild-type enzyme. The structure of crystalline T45G RNase A, determined at 1.8-A resolution by X-ray diffraction analysis, does not reveal new potential interactions with a nucleobase. Indeed, the two enzymes have a similar affinity for 6-FAM approximately d(AAA). The importance of pentofuranosyl ring conformation to nucleotide specificity was probed with 6-FAM approximately d(AU(F)AA), where U(F) is 2'-deoxy-2'-fluorouridine. The conformation of the pentofuranosyl ring in dU(F) is known to be more similar to that in rU than dU. The affinity of wild-type RNase A for 6-FAM approximately d(AU(F)AA) is 50-fold lower than for 6-FAM approximately d(AUAA). This discrimination is lost in the T45G enzyme. Together, these data indicate that the side chain of Thr45 plays multiple roles-interacting favorably with pyrimidine nucleobases but unfavorably with purine nucleobases. Moreover, a ribose-like ring disfavors the interaction of Thr45 with a pyrimidine nucleobase, suggesting that Thr45 enhances catalysis by ground-state destabilization.
| + | |
| | | | |
| - | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| - | 1C8W is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C8W OCA].
| + | </div> |
| | + | <div class="pdbe-citations 1c8w" style="background-color:#fffaf0;"></div> |
| | | | |
| - | ==Reference== | + | ==See Also== |
| - | Excavating an active site: the nucleobase specificity of ribonuclease A., Kelemen BR, Schultz LW, Sweeney RY, Raines RT, Biochemistry. 2000 Nov 28;39(47):14487-94. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11087402 11087402]
| + | *[[Ribonuclease 3D structures|Ribonuclease 3D structures]] |
| | + | == References == |
| | + | <references/> |
| | + | __TOC__ |
| | + | </StructureSection> |
| | [[Category: Bos taurus]] | | [[Category: Bos taurus]] |
| - | [[Category: Single protein]] | + | [[Category: Large Structures]] |
| - | [[Category: Kelemen, B R.]] | + | [[Category: Kelemen BR]] |
| - | [[Category: Raines, R T.]] | + | [[Category: Raines RT]] |
| - | [[Category: Schultz, L W.]] | + | [[Category: Schultz LW]] |
| - | [[Category: Sweeney, R T.]] | + | [[Category: Sweeney RT]] |
| - | [[Category: Anti-parallel beta sheet]]
| + | |
| - | [[Category: Rnase some]]
| + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 12:28:29 2008''
| + | |
| Structural highlights
Function
RNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Ribonuclease A (RNase A) catalyzes the cleavage of RNA after pyrimidine nucleotides. When bound in the active site, the base of a pyrimidine nucleotide forms hydrogen bonds with the side chain of Thr45. Here, the role of Thr45 was probed by using the wild-type enzyme, its T45G variant, X-ray diffraction analysis, and synthetic oligonucleotides as ligands and substrates. Catalytic specificity was determined with the fluorogenic substrate: 6-carboxyfluorescein approximately dArXdAdA approximately 6-carboxytetramethylrhodamine (6-FAM approximately dArXdAdA approximately 6-TAMRA), where X = C, U, A, or G. Wild-type RNase A cleaves 10(6)-fold faster when X = C than when X = A. Likewise, its affinity for the non-hydrolyzable oligonucleotide 6-FAM approximately d(CAA) is 50-fold greater than for 6-FAM approximately d(AAA). T45G RNase A cleaves 6-FAM approximately dArAdAdA approximately 6-TAMRA 10(2)-fold faster than does the wild-type enzyme. The structure of crystalline T45G RNase A, determined at 1.8-A resolution by X-ray diffraction analysis, does not reveal new potential interactions with a nucleobase. Indeed, the two enzymes have a similar affinity for 6-FAM approximately d(AAA). The importance of pentofuranosyl ring conformation to nucleotide specificity was probed with 6-FAM approximately d(AU(F)AA), where U(F) is 2'-deoxy-2'-fluorouridine. The conformation of the pentofuranosyl ring in dU(F) is known to be more similar to that in rU than dU. The affinity of wild-type RNase A for 6-FAM approximately d(AU(F)AA) is 50-fold lower than for 6-FAM approximately d(AUAA). This discrimination is lost in the T45G enzyme. Together, these data indicate that the side chain of Thr45 plays multiple roles-interacting favorably with pyrimidine nucleobases but unfavorably with purine nucleobases. Moreover, a ribose-like ring disfavors the interaction of Thr45 with a pyrimidine nucleobase, suggesting that Thr45 enhances catalysis by ground-state destabilization.
Excavating an active site: the nucleobase specificity of ribonuclease A.,Kelemen BR, Schultz LW, Sweeney RY, Raines RT Biochemistry. 2000 Nov 28;39(47):14487-94. PMID:11087402[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ delCardayre SB, Ribo M, Yokel EM, Quirk DJ, Rutter WJ, Raines RT. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261-73. PMID:7479688
- ↑ Kelemen BR, Schultz LW, Sweeney RY, Raines RT. Excavating an active site: the nucleobase specificity of ribonuclease A. Biochemistry. 2000 Nov 28;39(47):14487-94. PMID:11087402
|