|
|
Line 3: |
Line 3: |
| <StructureSection load='6i9g' size='340' side='right'caption='[[6i9g]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='6i9g' size='340' side='right'caption='[[6i9g]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6i9g]] is a 15 chain structure with sequence from [http://en.wikipedia.org/wiki/Mychd Mychd]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6I9G OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6I9G FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6i9g]] is a 15 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_hassiacum_DSM_44199 Mycolicibacterium hassiacum DSM 44199]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6I9G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6I9G FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lin, C731_3737 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1122247 MYCHD])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6i9g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6i9g OCA], [http://pdbe.org/6i9g PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6i9g RCSB], [http://www.ebi.ac.uk/pdbsum/6i9g PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6i9g ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6i9g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6i9g OCA], [https://pdbe.org/6i9g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6i9g RCSB], [https://www.ebi.ac.uk/pdbsum/6i9g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6i9g ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/K5BEG2_MYCHD K5BEG2_MYCHD] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Mychd]] | + | [[Category: Mycolicibacterium hassiacum DSM 44199]] |
- | [[Category: Fraaije, M W]] | + | [[Category: Fraaije MW]] |
- | [[Category: Rozeboom, H J]] | + | [[Category: Rozeboom HJ]] |
- | [[Category: Bacteriocin]]
| + | |
- | [[Category: Nanocage]]
| + | |
- | [[Category: Nanocompartment]]
| + | |
- | [[Category: Packaging of biocatalyst]]
| + | |
- | [[Category: Virus like particle]]
| + | |
| Structural highlights
Function
K5BEG2_MYCHD
Publication Abstract from PubMed
Using a newly discovered encapsulin from Mycolicibacterium hassiacum, several biocatalysts were packaged in this robust protein cage. The encapsulin was found to be easy to produce as recombinant protein. Elucidation of its crystal structure revealed that it is a spherical protein cage of 60 protomers (diameter of 23 nm) with narrow pores. By developing an effective coexpression and isolation procedure, the effect of packaging a variety of biocatalysts could be evaluated. It was shown that encapsulation results in a significantly higher stability of the biocatalysts. Most of the targeted cofactor-containing biocatalysts remained active in the encapsulin. Due to the restricted diameters of the encapsulin pores (5-9 A), the protein cage protects the encapsulated enzymes from bulky compounds. The work shows that encapsulins may be valuable tools to tune the properties of biocatalysts such as stability and substrate specificity.
Structure of a robust bacterial protein cage and its application as a versatile biocatalytic platform through enzyme encapsulation.,Loncar N, Rozeboom HJ, Franken LE, Stuart MCA, Fraaije MW Biochem Biophys Res Commun. 2020 Aug 27;529(3):548-553. doi:, 10.1016/j.bbrc.2020.06.059. Epub 2020 Jul 15. PMID:32736672[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Loncar N, Rozeboom HJ, Franken LE, Stuart MCA, Fraaije MW. Structure of a robust bacterial protein cage and its application as a versatile biocatalytic platform through enzyme encapsulation. Biochem Biophys Res Commun. 2020 Aug 27;529(3):548-553. doi:, 10.1016/j.bbrc.2020.06.059. Epub 2020 Jul 15. PMID:32736672 doi:http://dx.doi.org/10.1016/j.bbrc.2020.06.059
|