3bxq
From Proteopedia
(Difference between revisions)
(3 intermediate revisions not shown.) | |||
Line 3: | Line 3: | ||
<StructureSection load='3bxq' size='340' side='right'caption='[[3bxq]], [[Resolution|resolution]] 1.30Å' scene=''> | <StructureSection load='3bxq' size='340' side='right'caption='[[3bxq]], [[Resolution|resolution]] 1.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[3bxq]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BXQ OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[3bxq]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BXQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BXQ FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bxq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bxq OCA], [https://pdbe.org/3bxq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bxq RCSB], [https://www.ebi.ac.uk/pdbsum/3bxq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bxq ProSAT]</span></td></tr> |
</table> | </table> | ||
== Disease == | == Disease == | ||
- | [ | + | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> |
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 17: | Line 17: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bx/3bxq_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bx/3bxq_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 24: | Line 24: | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
- | + | The zinc insulin hexamer undergoes allosteric reorganization among three conformational states, designated T(6), T(3)R(3)(f), and R(6). Although the free monomer in solution (the active species) resembles the classical T-state, an R-like conformational change is proposed to occur upon receptor binding. Here, we distinguish between the conformational requirements of receptor binding and the crystallographic TR transition by design of an active variant refractory to such reorganization. Our strategy exploits the contrasting environments of His(B5) in wild-type structures: on the T(6) surface but within an intersubunit crevice in R-containing hexamers. The TR transition is associated with a marked reduction in His(B5) pK(a), in turn predicting that a positive charge at this site would destabilize the R-specific crevice. Remarkably, substitution of His(B5) (conserved among eutherian mammals) by Arg (occasionally observed among other vertebrates) blocks the TR transition, as probed in solution by optical spectroscopy. Similarly, crystallization of Arg(B5)-insulin in the presence of phenol (ordinarily a potent inducer of the TR transition) yields T(6) hexamers rather than R(6) as obtained in control studies of wild-type insulin. The variant structure, determined at a resolution of 1.3A, closely resembles the wild-type T(6) hexamer. Whereas Arg(B5) is exposed on the protein surface, its side chain participates in a solvent-stabilized network of contacts similar to those involving His(B5) in wild-type T-states. The substantial receptor-binding activity of Arg(B5)-insulin (40% relative to wild type) demonstrates that the function of an insulin monomer can be uncoupled from its allosteric reorganization within zinc-stabilized hexamers. | |
- | + | The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition.,Wan ZL, Huang K, Hu SQ, Whittaker J, Weiss MA J Biol Chem. 2008 Jul 25;283(30):21198-210. Epub 2008 May 20. PMID:18492668<ref>PMID:18492668</ref> | |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
Line 38: | Line 38: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Hu | + | [[Category: Hu SQ]] |
- | [[Category: Huang | + | [[Category: Huang K]] |
- | [[Category: Wan | + | [[Category: Wan ZL]] |
- | [[Category: Weiss | + | [[Category: Weiss MA]] |
- | [[Category: Whittaker | + | [[Category: Whittaker J]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition
|
Categories: Homo sapiens | Large Structures | Hu SQ | Huang K | Wan ZL | Weiss MA | Whittaker J