|
|
Line 3: |
Line 3: |
| <StructureSection load='6yj5' size='340' side='right'caption='[[6yj5]], [[Resolution|resolution]] 3.50Å' scene=''> | | <StructureSection load='6yj5' size='340' side='right'caption='[[6yj5]], [[Resolution|resolution]] 3.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6yj5]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18942 Atcc 18942]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YJ5 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6YJ5 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6yj5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Yarrowia_lipolytica Yarrowia lipolytica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YJ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6YJ5 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6yj4|6yj4]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.5Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">B0I71DRAFT_128700, YALI1_F30877g ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4952 ATCC 18942])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6yj5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6yj5 OCA], [https://pdbe.org/6yj5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6yj5 RCSB], [https://www.ebi.ac.uk/pdbsum/6yj5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6yj5 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6yj5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6yj5 OCA], [http://pdbe.org/6yj5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6yj5 RCSB], [http://www.ebi.ac.uk/pdbsum/6yj5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6yj5 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q6C0L9_YARLI Q6C0L9_YARLI] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
- | Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-A-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. By comparison with known structures, we deconvolute structural changes governing the mammalian 'deactive transition' (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.
| + | The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA. |
| | | |
- | Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation.,Grba DN, Hirst J Nat Struct Mol Biol. 2020 Aug 3. pii: 10.1038/s41594-020-0473-x. doi:, 10.1038/s41594-020-0473-x. PMID:32747785<ref>PMID:32747785</ref>
| + | Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A.,Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P Nat Struct Mol Biol. 2020 Aug 3. pii: 10.1038/s41594-020-0467-8. doi:, 10.1038/s41594-020-0467-8. PMID:32747784<ref>PMID:32747784</ref> |
| | | |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Line 21: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 18942]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Grba, D]] | + | [[Category: Yarrowia lipolytica]] |
- | [[Category: Hirst, J]] | + | [[Category: Grba D]] |
- | [[Category: Complex i]] | + | [[Category: Hirst J]] |
- | [[Category: Nadh:ubiquinone oxidoreductase]]
| + | |
- | [[Category: Sub-stoichiometric]]
| + | |
- | [[Category: Sulfur transferase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
Q6C0L9_YARLI
Publication Abstract from PubMed
The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.
Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A.,Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P Nat Struct Mol Biol. 2020 Aug 3. pii: 10.1038/s41594-020-0467-8. doi:, 10.1038/s41594-020-0467-8. PMID:32747784[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol. 2020 Sep;27(9):855-862. PMID:32747784 doi:10.1038/s41594-020-0467-8
|