6utw

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:58, 11 October 2023) (edit) (undo)
 
Line 1: Line 1:
-
====
+
==E. coli sigma-S transcription initiation complex with a 4-nt RNA ("Fresh" crystal)==
-
<StructureSection load='6utw' size='340' side='right'caption='[[6utw]]' scene=''>
+
<StructureSection load='6utw' size='340' side='right'caption='[[6utw]], [[Resolution|resolution]] 3.85&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6utw]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli], [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6UTW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6UTW FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6utw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6utw OCA], [http://pdbe.org/6utw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6utw RCSB], [http://www.ebi.ac.uk/pdbsum/6utw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6utw ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.854&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DPO:DIPHOSPHATE'>DPO</scene>, <scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6utw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6utw OCA], [https://pdbe.org/6utw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6utw RCSB], [https://www.ebi.ac.uk/pdbsum/6utw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6utw ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/RPOA_ECOLI RPOA_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
In bacteria, the dissociable sigma subunit of the RNA polymerase (RNAP) is responsible for initiating RNA synthesis from specific DNA sites. As nascent RNA grows, downstream DNA unwinds and is pulled into the RNAP, causing stress accumulation and initiation complex destabilization. Processive transcription elongation requires at least partial separation of the sigma factor from the RNAP core enzyme. Here, we present a series of transcription complexes captured between the early initiation and elongation phases via in-crystal RNA synthesis and cleavage. Crystal structures of these complexes indicate that stress accumulation during transcription initiation is not due to clashing of the growing nascent RNA with the sigma(3.2) loop, but results from scrunching of the template strand DNA that is contained inside the RNAP by the sigma(3) domain. Our results shed light on how scrunching of template-strand DNA drives both abortive initiation and sigma-RNAP core separation to transition transcription from initiation to elongation.
 +
 +
Structural Insights into Transcription Initiation from De Novo RNA Synthesis to Transitioning into Elongation.,Zuo Y, De S, Feng Y, Steitz TA iScience. 2020 Aug 11;23(9):101445. doi: 10.1016/j.isci.2020.101445. PMID:32829286<ref>PMID:32829286</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6utw" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Sigma factor 3D structures|Sigma factor 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Escherichia coli]]
 +
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Z-disk]]
+
[[Category: Synthetic construct]]
 +
[[Category: De S]]
 +
[[Category: Steitz TA]]
 +
[[Category: Zuo Y]]

Current revision

E. coli sigma-S transcription initiation complex with a 4-nt RNA ("Fresh" crystal)

PDB ID 6utw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools