|
|
Line 3: |
Line 3: |
| <StructureSection load='5uee' size='340' side='right'caption='[[5uee]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='5uee' size='340' side='right'caption='[[5uee]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5uee]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UEE OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5UEE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5uee]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UEE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5UEE FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GP3:DIGUANOSINE-5-TRIPHOSPHATE'>GP3</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=LCC:[(1R,3R,4R,7S)-7-HYDROXY-3-(5-METHYLCYTOSIN-1-YL)-2,5-DIOXABICYCLO[2.2.1]HEPT-1-YL]METHYL+DIHYDROGEN+PHOSPHATE'>LCC</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GP3:DIGUANOSINE-5-TRIPHOSPHATE'>GP3</scene>, <scene name='pdbligand=LCC:[(1R,3R,4R,7S)-7-HYDROXY-3-(5-METHYLCYTOSIN-1-YL)-2,5-DIOXABICYCLO[2.2.1]HEPT-1-YL]METHYL+DIHYDROGEN+PHOSPHATE'>LCC</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ued|5ued]], [[5uef|5uef]], [[5ueg|5ueg]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5uee FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5uee OCA], [https://pdbe.org/5uee PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5uee RCSB], [https://www.ebi.ac.uk/pdbsum/5uee PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5uee ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5uee FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5uee OCA], [http://pdbe.org/5uee PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5uee RCSB], [http://www.ebi.ac.uk/pdbsum/5uee PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5uee ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 23: |
Line 22: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Szostak, J W]] | + | [[Category: Synthetic construct]] |
- | [[Category: Tam, C P]] | + | [[Category: Szostak JW]] |
- | [[Category: Zhang, W]] | + | [[Category: Tam CP]] |
- | [[Category: Dinucleotide]] | + | [[Category: Zhang W]] |
- | [[Category: Rna]]
| + | |
| Structural highlights
Publication Abstract from PubMed
The nonenzymatic copying of RNA templates with imidazole-activated nucleotides is a well-studied model for the emergence of RNA self-replication during the origin of life. We have recently discovered that this reaction can proceed through the formation of an imidazolium-bridged dinucleotide intermediate that reacts rapidly with the primer. To gain insight into the relationship between the structure of this intermediate and its reactivity, we cocrystallized an RNA primer-template complex with a close analog of the intermediate, the triphosphate-bridged guanosine dinucleotide GpppG, and solved a high-resolution X-ray structure of the complex. The structure shows that GpppG binds the RNA template through two Watson-Crick base pairs, with the primer 3'-hydroxyl oriented to attack the 5'-phosphate of the adjacent G residue. Thus, the GpppG structure suggests that the bound imidazolium-bridged dinucleotide intermediate would be preorganized to react with the primer by in-line SN2 substitution. The structures of bound GppG and GppppG suggest that the length and flexibility of the 5'-5' linkage are important for optimal preorganization of the complex, whereas the position of the 5'-phosphate of bound pGpG explains the slow rate of oligonucleotide ligation reactions. Our studies provide a structural interpretation for the observed reactivity of the imidazolium-bridged dinucleotide intermediate in nonenzymatic RNA primer extension.
Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex.,Zhang W, Tam CP, Walton T, Fahrenbach AC, Birrane G, Szostak JW Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7659-7664. doi:, 10.1073/pnas.1704006114. Epub 2017 Jul 3. PMID:28673998[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Zhang W, Tam CP, Walton T, Fahrenbach AC, Birrane G, Szostak JW. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7659-7664. doi:, 10.1073/pnas.1704006114. Epub 2017 Jul 3. PMID:28673998 doi:http://dx.doi.org/10.1073/pnas.1704006114
|