|
|
(12 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:1cue.jpg|left|200px]] | |
| | | |
- | <!-- | + | ==CUTINASE, Q121L MUTANT== |
- | The line below this paragraph, containing "STRUCTURE_1cue", creates the "Structure Box" on the page.
| + | <StructureSection load='1cue' size='340' side='right'caption='[[1cue]], [[Resolution|resolution]] 2.10Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[1cue]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Fusarium_vanettenii Fusarium vanettenii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CUE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CUE FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | --> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1cue FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cue OCA], [https://pdbe.org/1cue PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1cue RCSB], [https://www.ebi.ac.uk/pdbsum/1cue PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1cue ProSAT]</span></td></tr> |
- | {{STRUCTURE_1cue| PDB=1cue | SCENE= }}
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CUTI1_FUSVN CUTI1_FUSVN] Catalyzes the hydrolysis of complex carboxylic polyesters found in the cell wall of plants (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Degrades cutin, a macromolecule that forms the structure of the plant cuticle (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Allows pathogenic fungi to penetrate through the cuticular barrier into the host plant during the initial stage of fungal infection (Ref.4).<ref>PMID:18658138</ref> <ref>PMID:19810726</ref> <ref>PMID:8286366</ref> <ref>PMID:8555209</ref> [PROSITE-ProRule:PRU10109] |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cu/1cue_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1cue ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | In characterizing mutants and covalently inhibited complexes of Fusarium solani cutinase, which is a 197-residue lipolytic enzyme, 34 variant structures, crystallizing in 8 different crystal forms, have been determined, mostly at high resolution. Taking advantage of this considerable body of information, a structural comparative analysis was carried out to investigate the dynamics of cutinase. Surface loops were identified as the major flexible protein regions, particularly those forming the active-site groove, whereas the elements constituting the protein scaffold were found to retain the same conformation in all the cutinase variants studied. Flexibility turned out to be correlated with thermal motion. With a given crystal packing environment, a high flexibility turned out to be correlated with a low involvement in crystal packing contacts. The high degree of crystal polymorphism, which allowed different conformations with similar energy to be detected, made it possible to identify motions which would have remained unidentified if only a single crystal form had been available. Fairly good agreement was found to exist between the data obtained from the structural comparison and those from a molecular dynamics (MD) simulation carried out on the native enzyme. The crystallographic approach used in this study turned out to be a suitable tool for investigating cutinase dynamics. Because of the availability of a set of closely related proteins in different crystal environments, the intrinsic drawback of a crystallographic approach was bypassed. By combining several static pictures, the dynamics of the protein could be monitored much more realistically than what can be achieved on the basis of static pictures alone. |
| | | |
- | '''CUTINASE, Q121L MUTANT'''
| + | Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants.,Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C Proteins. 1996 Dec;26(4):442-58. PMID:8990497<ref>PMID:8990497</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | In characterizing mutants and covalently inhibited complexes of Fusarium solani cutinase, which is a 197-residue lipolytic enzyme, 34 variant structures, crystallizing in 8 different crystal forms, have been determined, mostly at high resolution. Taking advantage of this considerable body of information, a structural comparative analysis was carried out to investigate the dynamics of cutinase. Surface loops were identified as the major flexible protein regions, particularly those forming the active-site groove, whereas the elements constituting the protein scaffold were found to retain the same conformation in all the cutinase variants studied. Flexibility turned out to be correlated with thermal motion. With a given crystal packing environment, a high flexibility turned out to be correlated with a low involvement in crystal packing contacts. The high degree of crystal polymorphism, which allowed different conformations with similar energy to be detected, made it possible to identify motions which would have remained unidentified if only a single crystal form had been available. Fairly good agreement was found to exist between the data obtained from the structural comparison and those from a molecular dynamics (MD) simulation carried out on the native enzyme. The crystallographic approach used in this study turned out to be a suitable tool for investigating cutinase dynamics. Because of the availability of a set of closely related proteins in different crystal environments, the intrinsic drawback of a crystallographic approach was bypassed. By combining several static pictures, the dynamics of the protein could be monitored much more realistically than what can be achieved on the basis of static pictures alone.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 1CUE is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Fusarium_solani_subsp._pisi Fusarium solani subsp. pisi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CUE OCA].
| + | </div> |
| + | <div class="pdbe-citations 1cue" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants., Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C, Proteins. 1996 Dec;26(4):442-58. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/8990497 8990497]
| + | *[[Cutinase 3D structures|Cutinase 3D structures]] |
- | [[Category: Fusarium solani subsp. pisi]] | + | == References == |
- | [[Category: Single protein]] | + | <references/> |
- | [[Category: Triacylglycerol lipase]]
| + | __TOC__ |
- | [[Category: Cambillau, C.]] | + | </StructureSection> |
- | [[Category: Martinez, C.]] | + | [[Category: Fusarium vanettenii]] |
- | [[Category: Glycoprotein]]
| + | [[Category: Large Structures]] |
- | [[Category: Hydrolase]]
| + | [[Category: Cambillau C]] |
- | [[Category: Serine esterase]]
| + | [[Category: Martinez C]] |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 13:07:17 2008''
| + | |
| Structural highlights
Function
CUTI1_FUSVN Catalyzes the hydrolysis of complex carboxylic polyesters found in the cell wall of plants (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Degrades cutin, a macromolecule that forms the structure of the plant cuticle (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Allows pathogenic fungi to penetrate through the cuticular barrier into the host plant during the initial stage of fungal infection (Ref.4).[1] [2] [3] [4] [PROSITE-ProRule:PRU10109]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In characterizing mutants and covalently inhibited complexes of Fusarium solani cutinase, which is a 197-residue lipolytic enzyme, 34 variant structures, crystallizing in 8 different crystal forms, have been determined, mostly at high resolution. Taking advantage of this considerable body of information, a structural comparative analysis was carried out to investigate the dynamics of cutinase. Surface loops were identified as the major flexible protein regions, particularly those forming the active-site groove, whereas the elements constituting the protein scaffold were found to retain the same conformation in all the cutinase variants studied. Flexibility turned out to be correlated with thermal motion. With a given crystal packing environment, a high flexibility turned out to be correlated with a low involvement in crystal packing contacts. The high degree of crystal polymorphism, which allowed different conformations with similar energy to be detected, made it possible to identify motions which would have remained unidentified if only a single crystal form had been available. Fairly good agreement was found to exist between the data obtained from the structural comparison and those from a molecular dynamics (MD) simulation carried out on the native enzyme. The crystallographic approach used in this study turned out to be a suitable tool for investigating cutinase dynamics. Because of the availability of a set of closely related proteins in different crystal environments, the intrinsic drawback of a crystallographic approach was bypassed. By combining several static pictures, the dynamics of the protein could be monitored much more realistically than what can be achieved on the basis of static pictures alone.
Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants.,Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C Proteins. 1996 Dec;26(4):442-58. PMID:8990497[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. Identification and characterization of bacterial cutinase. J Biol Chem. 2008 Sep 19;283(38):25854-62. PMID:18658138 doi:10.1074/jbc.M800848200
- ↑ Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK. Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc. 2009 Nov 4;131(43):15711-6. PMID:19810726 doi:10.1021/ja9046697
- ↑ Martinez C, Nicolas A, van Tilbeurgh H, Egloff MP, Cudrey C, Verger R, Cambillau C. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994 Jan 11;33(1):83-9. PMID:8286366
- ↑ Nicolas A, Egmond M, Verrips CT, de Vlieg J, Longhi S, Cambillau C, Martinez C. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistry. 1996 Jan 16;35(2):398-410. PMID:8555209 doi:http://dx.doi.org/10.1021/bi9515578
- ↑ Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Proteins. 1996 Dec;26(4):442-58. PMID:8990497 doi:<442::AID-PROT5>3.0.CO;2-D http://dx.doi.org/10.1002/(SICI)1097-0134(199612)26:4<442::AID-PROT5>3.0.CO;2-D
|