|
|
Line 1: |
Line 1: |
| | | |
| ==NMR structure of the carboxyterminal domains of Escherichia coli NusA== | | ==NMR structure of the carboxyterminal domains of Escherichia coli NusA== |
- | <StructureSection load='1wcl' size='340' side='right'caption='[[1wcl]], [[NMR_Ensembles_of_Models | 19 NMR models]]' scene=''> | + | <StructureSection load='1wcl' size='340' side='right'caption='[[1wcl]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1wcl]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WCL OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1WCL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1wcl]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WCL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WCL FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1u9l|1u9l]], [[1wcn|1wcn]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1wcl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wcl OCA], [http://pdbe.org/1wcl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1wcl RCSB], [http://www.ebi.ac.uk/pdbsum/1wcl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1wcl ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wcl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wcl OCA], [https://pdbe.org/1wcl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wcl RCSB], [https://www.ebi.ac.uk/pdbsum/1wcl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wcl ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI]] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> | + | [https://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Eisenmann, A]] | + | [[Category: Eisenmann A]] |
- | [[Category: Roesch, P]] | + | [[Category: Roesch P]] |
- | [[Category: Schwarz, S]] | + | [[Category: Schwarz S]] |
- | [[Category: Schweimer, K]] | + | [[Category: Schweimer K]] |
- | [[Category: C-terminal repeat unit]]
| + | |
- | [[Category: Escherichia coli nusa]]
| + | |
- | [[Category: Regulation of rna binding]]
| + | |
- | [[Category: Rna binding protein]]
| + | |
- | [[Category: Rna-binding protein]]
| + | |
- | [[Category: Transcription antitermination and termination]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
| Structural highlights
Function
NUSA_ECOLI Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.[1] [2] [3] [4] [5] [6] [7] [8] [9]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The carboxy-terminal domain of the transcription factor Escherichia coli NusA, NusACTD, interacts with the protein N of bacteriophage lambda, lambdaN, and the carboxyl terminus of the E. coli RNA polymerase alpha subunit, alphaCTD. We solved the solution structure of the unbound NusACTD with high-resolution nuclear magnetic resonance (NMR). Additionally, we investigated the binding sites of lambdaN and alphaCTD on NusACTD using NMR titrations. The solution structure of NusACTD shows two structurally similar subdomains, NusA(353-416) and NusA(431-490), matching approximately two homologous acidic sequence repeats. Further characterization of NusACTD with 15N NMR relaxation data suggests that the interdomain region is only weakly structured and that the subdomains are not interacting. Both subdomains adopt an (HhH)2 fold. These folds are normally involved in DNA-protein and protein-protein interactions. NMR titration experiments show clear differences of the interactions of these two domains with alphaCTD and lambdaN, in spite of their structural similarity.
The E. coli NusA carboxy-terminal domains are structurally similar and show specific RNAP- and lambdaN interaction.,Eisenmann A, Schwarz S, Prasch S, Schweimer K, Rosch P Protein Sci. 2005 Aug;14(8):2018-29. Epub 2005 Jun 29. PMID:15987884[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Greenblatt J, Li J. Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell. 1981 May;24(2):421-8. PMID:6263495
- ↑ Greenblatt J, McLimont M, Hanly S. Termination of transcription by nusA gene protein of Escherichia coli. Nature. 1981 Jul 16;292(5820):215-20. PMID:6265785
- ↑ Schmidt MC, Chamberlin MJ. Amplification and isolation of Escherichia coli nusA protein and studies of its effects on in vitro RNA chain elongation. Biochemistry. 1984 Jan 17;23(2):197-203. PMID:6199039
- ↑ Schmidt MC, Chamberlin MJ. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J Mol Biol. 1987 Jun 20;195(4):809-18. PMID:2821282 doi:http://dx.doi.org/10.1016/0022-2836(87)90486-4
- ↑ Liu K, Hanna MM. NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol. 1995 Apr 7;247(4):547-58. PMID:7536848 doi:http://dx.doi.org/10.1006/jmbi.1994.0161
- ↑ Vogel U, Jensen KF. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem. 1997 May 9;272(19):12265-71. PMID:9139668
- ↑ Gusarov I, Nudler E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell. 2001 Nov 16;107(4):437-49. PMID:11719185
- ↑ Cohen SE, Lewis CA, Mooney RA, Kohanski MA, Collins JJ, Landick R, Walker GC. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15517-22. doi:, 10.1073/pnas.1005203107. Epub 2010 Aug 9. PMID:20696893 doi:http://dx.doi.org/10.1073/pnas.1005203107
- ↑ Burmann BM, Rosch P. The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism. Transcription. 2011 May;2(3):130-134. PMID:21922055 doi:http://dx.doi.org/10.4161/trns.2.3.15671
- ↑ Eisenmann A, Schwarz S, Prasch S, Schweimer K, Rosch P. The E. coli NusA carboxy-terminal domains are structurally similar and show specific RNAP- and lambdaN interaction. Protein Sci. 2005 Aug;14(8):2018-29. Epub 2005 Jun 29. PMID:15987884 doi:10.1110/ps.051372205
|