7km5
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 7km5 is ON HOLD Authors: Description: Category: Unreleased Structures) |
|||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal structure of SARS-CoV-2 RBD complexed with Nanosota-1== | |
+ | <StructureSection load='7km5' size='340' side='right'caption='[[7km5]], [[Resolution|resolution]] 3.19Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[7km5]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Lama_glama Lama glama] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7KM5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7KM5 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.19Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7km5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7km5 OCA], [https://pdbe.org/7km5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7km5 RCSB], [https://www.ebi.ac.uk/pdbsum/7km5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7km5 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/SPIKE_SARS2 SPIKE_SARS2] attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099]<ref>PMID:32075877</ref> <ref>PMID:32142651</ref> <ref>PMID:32155444</ref> mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19. | ||
- | + | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates.,Ye G, Gallant J, Zheng J, Massey C, Shi K, Tai W, Odle A, Vickers M, Shang J, Wan Y, Du L, Aihara H, Perlman S, LeBeau A, Li F Elife. 2021 Aug 2;10:e64815. doi: 10.7554/eLife.64815. PMID:34338634<ref>PMID:34338634</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 7km5" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Lama glama]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Severe acute respiratory syndrome coronavirus 2]] | ||
+ | [[Category: Aihara H]] | ||
+ | [[Category: Li F]] | ||
+ | [[Category: Shi K]] | ||
+ | [[Category: Ye G]] |
Current revision
Crystal structure of SARS-CoV-2 RBD complexed with Nanosota-1
|