|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1ao0' size='340' side='right'caption='[[1ao0]], [[Resolution|resolution]] 2.80Å' scene=''> | | <StructureSection load='1ao0' size='340' side='right'caption='[[1ao0]], [[Resolution|resolution]] 2.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1ao0]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AO0 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1AO0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1ao0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AO0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AO0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5GP:GUANOSINE-5-MONOPHOSPHATE'>5GP</scene>, <scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PURF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5GP:GUANOSINE-5-MONOPHOSPHATE'>5GP</scene>, <scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Amidophosphoribosyltransferase Amidophosphoribosyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.2.14 2.4.2.14] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ao0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ao0 OCA], [https://pdbe.org/1ao0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ao0 RCSB], [https://www.ebi.ac.uk/pdbsum/1ao0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ao0 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1ao0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ao0 OCA], [http://pdbe.org/1ao0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ao0 RCSB], [http://www.ebi.ac.uk/pdbsum/1ao0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ao0 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PUR1_BACSU PUR1_BACSU] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
- | [[Category: Amidophosphoribosyltransferase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Smith, J L]] | + | [[Category: Smith JL]] |
- | [[Category: Tomchick, D R]] | + | [[Category: Tomchick DR]] |
- | [[Category: Glutamine amidotransferase]]
| + | |
- | [[Category: Glycosyltransferase]]
| + | |
- | [[Category: Phosphoribosyltransferase]]
| + | |
- | [[Category: Prtase]]
| + | |
- | [[Category: Purine biosynthesis]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
PUR1_BACSU
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
De novo purine nucleotide synthesis is regulated, at least in part, by end-product inhibition of glutamine PRPP amidotransferase. An important feature of this inhibition is the fact that certain synergistic nucleotide pairs give more than additive inhibition. The physiological importance of synergism is in amplifying regulation by the adenine and guanine nucleotide end products of de novo synthesis. Using a new method to quantitate synergism, ADP plus GMP were confirmed [Meyer, E., and Switzer, R. L. (1978) J. Biol. Chem. 254, 5397-5402] to give strong synergistic inhibition of Bacillus subtilis glutamine PRPP amidotransferase. An X-ray structure of the ternary enzyme.ADP.GMP complex established that ADP binds to the allosteric A site and GMP to the catalytic C site. GMP increased the binding affinity of ADP for the A site by approximately 20-fold. Synergism results from a specific nucleotide-nucleotide interaction that is dependent upon a nucleoside diphosphate in the A site and a nucleoside monophosphate in the C site. Furthermore, synergism is enhanced by the competition between nucleotide inhibitor and PRPP substrate for the C site. Purine base specificity results from a backbone carbonyl interaction of Lys305' with the 6-NH2 group of adenine in the A site and a Ser347 Ogamma interaction with the 2-NH2 group of guanine in the C site. Steric considerations favor binding of the nucleoside diphosphate to the A site. Site-directed replacements of key residues increased the nucleotide concentrations needed for 50% inhibition and in some cases perturbed synergism. Mutations in either of the nucleotide sites perturbed function at both sites, supporting the important role of synergism.
Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides.,Chen S, Tomchick DR, Wolle D, Hu P, Smith JL, Switzer RL, Zalkin H Biochemistry. 1997 Sep 2;36(35):10718-26. PMID:9271502[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Chen S, Tomchick DR, Wolle D, Hu P, Smith JL, Switzer RL, Zalkin H. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides. Biochemistry. 1997 Sep 2;36(35):10718-26. PMID:9271502 doi:10.1021/bi9711893
|