|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==COMPLEX OF BCL-XL WITH PEPTIDE FROM BAD== | | ==COMPLEX OF BCL-XL WITH PEPTIDE FROM BAD== |
- | <StructureSection load='1g5j' size='340' side='right'caption='[[1g5j]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''> | + | <StructureSection load='1g5j' size='340' side='right'caption='[[1g5j]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1g5j]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G5J OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1G5J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1g5j]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G5J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G5J FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bxl|1bxl]], [[1g5m|1g5m]], [[1g5o|1g5o]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BCLX ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g5j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g5j OCA], [https://pdbe.org/1g5j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g5j RCSB], [https://www.ebi.ac.uk/pdbsum/1g5j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g5j ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1g5j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g5j OCA], [http://pdbe.org/1g5j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1g5j RCSB], [http://www.ebi.ac.uk/pdbsum/1g5j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1g5j ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/B2CL1_HUMAN B2CL1_HUMAN]] Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.<ref>PMID:19917720</ref> <ref>PMID:21840391</ref> Isoform Bcl-X(S) promotes apoptosis.<ref>PMID:19917720</ref> <ref>PMID:21840391</ref> [[http://www.uniprot.org/uniprot/BAD_HUMAN BAD_HUMAN]] Promotes cell death. Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W, thereby affecting the level of heterodimerization of these proteins with BAX. Can reverse the death repressor activity of Bcl-X(L), but not that of Bcl-2 (By similarity). Appears to act as a link between growth factor receptor signaling and the apoptotic pathways. | + | [https://www.uniprot.org/uniprot/B2CL1_HUMAN B2CL1_HUMAN] Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.<ref>PMID:19917720</ref> <ref>PMID:21840391</ref> Isoform Bcl-X(S) promotes apoptosis.<ref>PMID:19917720</ref> <ref>PMID:21840391</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Fesik, S W]] | + | [[Category: Fesik SW]] |
- | [[Category: Mack, J]] | + | [[Category: Mack J]] |
- | [[Category: Matayoshi, E D]] | + | [[Category: Matayoshi ED]] |
- | [[Category: Meadows, R P]] | + | [[Category: Meadows RP]] |
- | [[Category: Nettesheim, D G]] | + | [[Category: Nettesheim DG]] |
- | [[Category: Olejniczak, E T]] | + | [[Category: Olejniczak ET]] |
- | [[Category: Petros, A M]] | + | [[Category: Petros AM]] |
- | [[Category: Swift, K]] | + | [[Category: Swift K]] |
- | [[Category: Thompson, C B]] | + | [[Category: Thompson CB]] |
- | [[Category: Wang, Y]] | + | [[Category: Wang Y]] |
- | [[Category: Zhang, H]] | + | [[Category: Zhang H]] |
- | [[Category: Apoptosis]]
| + | |
- | [[Category: Complex]]
| + | |
| Structural highlights
Function
B2CL1_HUMAN Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.[1] [2] Isoform Bcl-X(S) promotes apoptosis.[3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The three-dimensional structure of the anti-apoptotic protein Bcl-xL complexed to a 25-residue peptide from the death promoting region of Bad was determined using NMR spectroscopy. Although the overall structure is similar to Bcl-xL bound to a 16-residue peptide from the Bak protein (Sattler et al., 1997), the Bad peptide forms additional interactions with Bcl-xL. However, based upon site-directed mutagenesis experiments, these additional contacts do not account for the increased affinity of the Bad 25-mer for Bcl-xL compared to the Bad 16-mer. Rather, the increased helix propensity of the Bad 25-mer is primarily responsible for its greater affinity for Bcl-xL. Based on this observation, a pair of 16-residue peptides were designed and synthesized that were predicted to have a high helix propensity while maintaining the interactions important for complexation with Bcl-xL. Both peptides showed an increase in helix propensity compared to the wild-type and exhibited an enhanced affinity for Bcl-xL.
Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies.,Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW Protein Sci. 2000 Dec;9(12):2528-34. PMID:11206074[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
- ↑ Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
- ↑ Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
- ↑ Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
- ↑ Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 2000 Dec;9(12):2528-34. PMID:11206074
|