Mitochondrial calcium uniporter

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: ==Mitochondrial Calcium Uniporter== <StructureSection load='6dnf' size='340' side='right' caption='Mitochondrial Calcium Uniporter (MCU): Each monomer is shown in a different color. Calciu...)
Current revision (18:31, 28 August 2025) (edit) (undo)
(Category:Featured in BAMBED)
 
(6 intermediate revisions not shown.)
Line 1: Line 1:
 +
{{BAMBED
 +
|DATE=December 3, 2020
 +
|OLDID=3326279
 +
|BAMBEDDOI=10.1002/bmb.21560
 +
}}
 +
==Mitochondrial Calcium Uniporter==
==Mitochondrial Calcium Uniporter==
<StructureSection load='6dnf' size='340' side='right' caption='Mitochondrial Calcium Uniporter (MCU): Each monomer is shown in a different color. Calcium ions are shown in green. (PDB Code [http://www.rcsb.org/pdb/explore/explore.do?structureId=6DNF 6DNF])' scene='83/832952/Starting_scene/5'>
<StructureSection load='6dnf' size='340' side='right' caption='Mitochondrial Calcium Uniporter (MCU): Each monomer is shown in a different color. Calcium ions are shown in green. (PDB Code [http://www.rcsb.org/pdb/explore/explore.do?structureId=6DNF 6DNF])' scene='83/832952/Starting_scene/5'>
== Overview ==
== Overview ==
-
The mitochondrial calcium uniporter (MCU) complex is the main source of entry for [https://en.wikipedia.org/wiki/Calcium calcium] ions into the [https://en.wikipedia.org/wiki/Mitochondrial_matrix mitochondrial matrix] from the [https://en.wikipedia.org/wiki/Mitochondrion#Intermembrane_space intermembrane space]. MCU channels exist in most [https://en.wikipedia.org/wiki/Eukaryote eukaryotes], but activity is regulated differently in each [https://en.wikipedia.org/wiki/Clade clade].<ref name="Baradaran">PMID:29995857</ref> MCU was definitively assigned in 2011 using a combination of [https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopy NMR spectroscopy], [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryoelectron microscopy], and [https://en.wikipedia.org/wiki/X-ray_crystallography x-ray crystallography].<ref name="Woods">PMID:31869674</ref> Recent [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryoelectron microscopy] (cryo-EM) analysis provides a structural framework for understanding the mechanism for calcium selectivity by the MCU.<ref name="Giorgi" /> Like other ion channels, the MCU is highly selective and efficient, allowing calcium ions into the mitochondrial matrix at a rate of 5,000,000 ions per second, even though [https://en.wikipedia.org/wiki/Potassium potassium] ions are over 100,000 times more abundant in the intermembrane space.<ref name="Baradaran"/>
+
The '''mitochondrial calcium uniporter''' (MCU) complex is the main source of entry for [https://en.wikipedia.org/wiki/Calcium calcium] ions into the [https://en.wikipedia.org/wiki/Mitochondrial_matrix mitochondrial matrix] from the [https://en.wikipedia.org/wiki/Mitochondrion#Intermembrane_space intermembrane space]. MCU channels exist in most [https://en.wikipedia.org/wiki/Eukaryote eukaryotes], but activity is regulated differently in each [https://en.wikipedia.org/wiki/Clade clade].<ref name="Baradaran">PMID:29995857</ref> MCU was definitively assigned in 2011 using a combination of [https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopy NMR spectroscopy], [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryoelectron microscopy], and [https://en.wikipedia.org/wiki/X-ray_crystallography x-ray crystallography].<ref name="Woods">PMID:31869674</ref> Recent [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryoelectron microscopy] (cryo-EM) analysis provides a structural framework for understanding the mechanism for calcium selectivity by the MCU.<ref name="Giorgi" /> Like other ion channels, the MCU is highly selective and efficient, allowing calcium ions into the mitochondrial matrix at a rate of 5,000,000 ions per second, even though [https://en.wikipedia.org/wiki/Potassium potassium] ions are over 100,000 times more abundant in the intermembrane space.<ref name="Baradaran"/>
Under resting conditions, the calcium concentration in the mitochondria is about the same as in the [https://en.wikipedia.org/wiki/Cytoplasm cytoplasm], but when stimulated, mitochondrial calcium concentration increases 10 to 20-fold.<ref name="Giorgi">PMID:30143745</ref> [https://en.wikipedia.org/wiki/Mitochondria_associated_membranes Mitochondria-associated ER membranes] exist between the mitochondria and the [https://en.wikipedia.org/wiki/Endoplasmic_reticulum endoplasmic reticulum] facilitate efficient transport of calcium ions.<ref name="Wang">PMID:28882140</ref> The transfer of electrons through [https://en.wikipedia.org/wiki/Electron_transport_chain#Mitochondrial_redox_carriers respiratory complexes I-IV] produces the energy to pump [https://en.wikipedia.org/wiki/Hydrogen_ion hydrogen ions] into the intermembrane space and establish the proton [https://en.wikipedia.org/wiki/Electrochemical_gradient electrochemical gradient] potential.<ref name="Giorgi"/> This negative electrochemical potential is the driving force that moves positively charged calcium ions into the mitochondrial matrix.<ref name="Giorgi"/> Calcium uptake and efflux must be tightly regulated to controll essential [https://en.wikipedia.org/wiki/Citric_acid_cycle Krebs cycle] enzyme activity, including [http://proteopedia.org/wiki/index.php/Pyruvate_dehydrogenase pyruvate dehydrogenase], [https://en.wikipedia.org/wiki/Oxoglutarate_dehydrogenase_complex α-ketoglutarate dehydrogenase], and [http://proteopedia.org/wiki/index.php/Isocitrate_dehydrogenase isocitrate dehydrogenase], while avoiding calcium overload and [https://en.wikipedia.org/wiki/Apoptosis apoptosis].<ref name="Wang"/>
Under resting conditions, the calcium concentration in the mitochondria is about the same as in the [https://en.wikipedia.org/wiki/Cytoplasm cytoplasm], but when stimulated, mitochondrial calcium concentration increases 10 to 20-fold.<ref name="Giorgi">PMID:30143745</ref> [https://en.wikipedia.org/wiki/Mitochondria_associated_membranes Mitochondria-associated ER membranes] exist between the mitochondria and the [https://en.wikipedia.org/wiki/Endoplasmic_reticulum endoplasmic reticulum] facilitate efficient transport of calcium ions.<ref name="Wang">PMID:28882140</ref> The transfer of electrons through [https://en.wikipedia.org/wiki/Electron_transport_chain#Mitochondrial_redox_carriers respiratory complexes I-IV] produces the energy to pump [https://en.wikipedia.org/wiki/Hydrogen_ion hydrogen ions] into the intermembrane space and establish the proton [https://en.wikipedia.org/wiki/Electrochemical_gradient electrochemical gradient] potential.<ref name="Giorgi"/> This negative electrochemical potential is the driving force that moves positively charged calcium ions into the mitochondrial matrix.<ref name="Giorgi"/> Calcium uptake and efflux must be tightly regulated to controll essential [https://en.wikipedia.org/wiki/Citric_acid_cycle Krebs cycle] enzyme activity, including [http://proteopedia.org/wiki/index.php/Pyruvate_dehydrogenase pyruvate dehydrogenase], [https://en.wikipedia.org/wiki/Oxoglutarate_dehydrogenase_complex α-ketoglutarate dehydrogenase], and [http://proteopedia.org/wiki/index.php/Isocitrate_dehydrogenase isocitrate dehydrogenase], while avoiding calcium overload and [https://en.wikipedia.org/wiki/Apoptosis apoptosis].<ref name="Wang"/>
Line 57: Line 63:
Calcium overload in the mitochondria of cardiac cells lead to [https://en.wikipedia.org/wiki/Apoptosis apoptotic] cardiac cell death. Calcium governs [https://en.wikipedia.org/wiki/Cardiac_excitation-contraction_coupling excitation contraction coupling] of the cardiac muscles, which creates the ATP needed to power the contraction during heart beats. The increase in mitochondrial Ca<sup>2+</sup> concentration is essential for the functioning of this muscle contraction. Mitochondrial Ca<sup>2+</sup> overload, though, leads to [https://en.wikipedia.org/wiki/Necrosis necrotic] cardiac cell death and can be targeted with regulation of the MCU. An example of potential treatment might involve the use of Ru360 to inhibit the uptake of Ca<sup>2+</sup> ions into the mitochondria.<ref name="Giorgi" />
Calcium overload in the mitochondria of cardiac cells lead to [https://en.wikipedia.org/wiki/Apoptosis apoptotic] cardiac cell death. Calcium governs [https://en.wikipedia.org/wiki/Cardiac_excitation-contraction_coupling excitation contraction coupling] of the cardiac muscles, which creates the ATP needed to power the contraction during heart beats. The increase in mitochondrial Ca<sup>2+</sup> concentration is essential for the functioning of this muscle contraction. Mitochondrial Ca<sup>2+</sup> overload, though, leads to [https://en.wikipedia.org/wiki/Necrosis necrotic] cardiac cell death and can be targeted with regulation of the MCU. An example of potential treatment might involve the use of Ru360 to inhibit the uptake of Ca<sup>2+</sup> ions into the mitochondria.<ref name="Giorgi" />
</StructureSection>
</StructureSection>
 +
 +
==3D structures of mitochondrial calcium uniporter==
 +
 +
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
 +
{{#tree:id=OrganizedByTopic|openlevels=0|
 +
 +
*Mitochondrial calcium uniporter
 +
 +
**[[4xtb]] – hMCU N-terminal – human <br />
 +
**[[4xsj]], [[5bz6]] – hMCU N-terminal/T4 lysozyme<br />
 +
**[[6jg0]], [[6kvx]] – hMCU N-terminal (mutant)/T4 lysozyme<br />
 +
**[[5kug]], [[5kui]], [[5kuj]] – hMCU residues 72-189<br />
 +
**[[5kue]] – hMCU residues 72-189 (mutant)<br />
 +
**[[6eaz]] – MCU - mouse<br />
 +
**[[5id3]] – MCU pore-forming domain – ''Caenorhabditis elegans'' - NMR <br />
 +
**[[6dnf]] – MCU – ''Cyphellophora europaea'' – Cryo EM<br />
 +
**[[6dt0]] – MCU – ''Neurospora crassa'' – Cryo EM<br />
 +
**[[6d7w]] – AfMCU – ''Aspergillus fischeri'' – Cryo EM<br />
 +
**[[6x4s]] – MCU/essential MCU regulator – ''Tribolium castaneum'' – Cryo EM<br />
 +
**[[5z2h]], [[5z2i]] – MCU N-terminal – ''Dictyostelium discoideum''<br />
 +
**[[6c5r]] – MaMCU soluble domain 99-426 – ''Metarhizium acridum'' <br />
 +
 +
*Mitochondrial calcium uniporter complex
 +
 +
**[[6k7x]], [[6o58]], [[6o5b]] – hMCU + essential MCU regulator – Cryo EM<br />
 +
**[[6wdn]], [[6wdo]], [[6k7y]], [[6xjv]], [[6xjx]], [[6xqn]] – hMCU + essential MCU regulator + calcium uptake proteins 1,2 – Cryo EM<br />
 +
**[[6d80]] – AfMCU + saposin – Cryo EM<br />
 +
**[[6c5w]] – MaMCU soluble domain + nanobody<br />
 +
}}
==References==
==References==
<references/>
<references/>
Line 70: Line 105:
Rieser Wells
Rieser Wells
 +
[[Category:Topic Page]]
 +
[[Category:Featured in BAMBED]]

Current revision

This page, as it appeared on December 3, 2020, was featured in this article in the journal Biochemistry and Molecular Biology Education.

Contents

Mitochondrial Calcium Uniporter

Mitochondrial Calcium Uniporter (MCU): Each monomer is shown in a different color. Calcium ions are shown in green. (PDB Code 6DNF)

Drag the structure with the mouse to rotate

3D structures of mitochondrial calcium uniporter

Updated on 28-August-2025

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0331-8. doi:, 10.1038/s41586-018-0331-8. PMID:29995857 doi:http://dx.doi.org/10.1038/s41586-018-0331-8
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol. 2019 Dec 20;55:9-18. doi: 10.1016/j.cbpa.2019.11.006. PMID:31869674 doi:http://dx.doi.org/10.1016/j.cbpa.2019.11.006
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018 Nov;19(11):713-730. doi: 10.1038/s41580-018-0052-8. PMID:30143745 doi:http://dx.doi.org/10.1038/s41580-018-0052-8
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 Wang CH, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca(2+) homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J Biomed Sci. 2017 Sep 7;24(1):70. doi: 10.1186/s12929-017-0375-3. PMID:28882140 doi:http://dx.doi.org/10.1186/s12929-017-0375-3
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9

Student Contributors

Ryan Heumann

Lizzy Ratz

Holly Rowe

Madi Summers

Rieser Wells

Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Angel Herraez, R. Jeremy Johnson

Personal tools