Sandbox Reserved 1638
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
{{Sandbox_Reserved_BHall_F20}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE --> | {{Sandbox_Reserved_BHall_F20}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE --> | ||
- | == | + | ==Structure== |
<StructureSection load='6X0J' size='340' side='right' caption='Caption for this structure' scene=''> | <StructureSection load='6X0J' size='340' side='right' caption='Caption for this structure' scene=''> | ||
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | ||
Line 6: | Line 6: | ||
== Function of your Protein == | == Function of your Protein == | ||
- | <scene name='86/861620/Regular_protein/1'>SidA catalyzes NADPH-dependent hydroxylation of ornithine through oxidative mechanisms.</scene> | + | <scene name='86/861620/Regular_protein/1'>SidA catalyzes NADPH-dependent hydroxylation of ornithine through oxidative mechanisms.</scene> SidA acts as both a receptor and an enzyme. As a receptor it extracts metals such as iron and takes it into cells. It is also an enzyme because it uses the FAD in the reactions. |
== Biological relevance and broader implications == | == Biological relevance and broader implications == |
Current revision
This Sandbox is Reserved from 09/18/2020 through 03/20/2021 for use in CHEM 351 Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, IA. This reservation includes Sandbox Reserved 1628 through Sandbox Reserved 1642. |
To get started:
More help: Help:Editing |
Structure
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Campbell AC, Stiers KM, Martin Del Campo JS, Mehra-Chaudhary R, Sobrado P, Tanner JJ. Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics. J Biol Chem. 2020 Jul 28. pii: RA120.014750. doi: 10.1074/jbc.RA120.014750. PMID:32723870 doi:http://dx.doi.org/10.1074/jbc.RA120.014750