|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='6z3c' size='340' side='right'caption='[[6z3c]], [[Resolution|resolution]] 1.74Å' scene=''> | | <StructureSection load='6z3c' size='340' side='right'caption='[[6z3c]], [[Resolution|resolution]] 1.74Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6z3c]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_29149 Atcc 29149]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Z3C OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6Z3C FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6z3c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ruminococcus_gnavus Ruminococcus gnavus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Z3C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6Z3C FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.74Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDL25_11485, CDL27_13940, DW270_01520, DW812_00100, DWY88_14550, DWZ50_08505 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=33038 ATCC 29149])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6z3c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6z3c OCA], [http://pdbe.org/6z3c PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6z3c RCSB], [http://www.ebi.ac.uk/pdbsum/6z3c PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6z3c ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6z3c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6z3c OCA], [https://pdbe.org/6z3c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6z3c RCSB], [https://www.ebi.ac.uk/pdbsum/6z3c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6z3c ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A2N5NNS3_RUMGN A0A2N5NNS3_RUMGN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 29149]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lee, M O]] | + | [[Category: Lee MO]] |
- | [[Category: Naismith, J H]] | + | [[Category: Naismith JH]] |
- | [[Category: Carbohydrate]]
| + | |
- | [[Category: Enzyme]]
| + | |
- | [[Category: Epimerase]]
| + | |
- | [[Category: Oxidase]]
| + | |
- | [[Category: Reductase]]
| + | |
- | [[Category: Sialic acid]]
| + | |
| Structural highlights
Function
A0A2N5NNS3_RUMGN
Publication Abstract from PubMed
The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD(+) regeneration. The crystal structure of RgNanOx in complex with the NAD(+) cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli.
Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria.,Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N J Biol Chem. 2020 Oct 2;295(40):13724-13736. doi: 10.1074/jbc.RA120.014454. Epub , 2020 Jul 15. PMID:32669363[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J, Thomas GH, Naismith JH, Juge N. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem. 2020 Oct 2;295(40):13724-13736. doi: 10.1074/jbc.RA120.014454. Epub , 2020 Jul 15. PMID:32669363 doi:http://dx.doi.org/10.1074/jbc.RA120.014454
|