|
|
Line 3: |
Line 3: |
| <StructureSection load='2hct' size='340' side='right'caption='[[2hct]], [[Resolution|resolution]] 1.95Å' scene=''> | | <StructureSection load='2hct' size='340' side='right'caption='[[2hct]], [[Resolution|resolution]] 1.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2hct]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HCT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HCT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2hct]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HCT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HCT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NMN:BETA-NICOTINAMIDE+RIBOSE+MONOPHOSPHATE'>NMN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CD38 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NMN:BETA-NICOTINAMIDE+RIBOSE+MONOPHOSPHATE'>NMN</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/NAD(+)_nucleosidase NAD(+) nucleosidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.2.5 3.2.2.5] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hct FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hct OCA], [https://pdbe.org/2hct PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hct RCSB], [https://www.ebi.ac.uk/pdbsum/2hct PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hct ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hct FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hct OCA], [https://pdbe.org/2hct PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hct RCSB], [https://www.ebi.ac.uk/pdbsum/2hct PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hct ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CD38_HUMAN CD38_HUMAN]] Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system.
| + | [https://www.uniprot.org/uniprot/CD38_HUMAN CD38_HUMAN] Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Graeff, R]] | + | [[Category: Graeff R]] |
- | [[Category: Hao, Q]] | + | [[Category: Hao Q]] |
- | [[Category: Kriksunov, I A]] | + | [[Category: Kriksunov IA]] |
- | [[Category: Lee, H C]] | + | [[Category: Lee HC]] |
- | [[Category: Liu, Q]] | + | [[Category: Liu Q]] |
- | [[Category: Alpha bundle]]
| + | |
- | [[Category: Beta sheet]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
CD38_HUMAN Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a novel metabolite of NADP that has now been established as a Ca(2+) messenger in many cellular systems. Its synthesis is catalyzed by multifunctional enzymes, CD38 and ADP-ribosyl cyclase (cyclase). The degradation pathway for NAADP is unknown and no enzyme that can specifically hydrolyze it has yet been identified. Here we show that CD38 can, in fact, hydrolyze NAADP to ADP-ribose 2'-phosphate. This activity was low at neutrality but greatly increased at acidic pH. This novel pH dependence suggests that the hydrolysis is determined by acidic residues at the active site. X-ray crystallography of the complex of CD38 with one of its substrates, NMN, showed that the nicotinamide moiety was in close contact with Glu(146) at 3.27 A and Asp(155) at 2.52 A. Changing Glu(146) to uncharged Gly and Ala, and Asp(155) to Gln and Asn, by site-directed mutagenesis indeed eliminated the strong pH dependence. Changing Asp(155) to Glu, in contrast, preserved the dependence. The specificity of the two acidic residues was further demonstrated by changing the adjacent Asp(147) to Val, which had minimal effect on the pH dependence. Crystallography confirmed that Asp(147) was situated and directed away from the bound substrate. Synthesis of NAADP catalyzed by CD38 is known to have strong preference for acidic pH, suggesting that Glu(146) and Asp(155) are also critical determinants. This was shown to be case by mutagensis. Likewise, using similar approaches, Glu(98) of the cyclase, which is equivalent to Glu(146) in CD38, was found to be responsible for controlling the pH dependence of NAADP synthesis by the cyclase. Based on these findings, a catalytic model is proposed.
Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities.,Graeff R, Liu Q, Kriksunov IA, Hao Q, Lee HC J Biol Chem. 2006 Sep 29;281(39):28951-7. Epub 2006 Jul 21. PMID:16861223[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Graeff R, Liu Q, Kriksunov IA, Hao Q, Lee HC. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem. 2006 Sep 29;281(39):28951-7. Epub 2006 Jul 21. PMID:16861223 doi:10.1074/jbc.M604370200
|