6z35
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 3: | Line 3: | ||
<StructureSection load='6z35' size='340' side='right'caption='[[6z35]]' scene=''> | <StructureSection load='6z35' size='340' side='right'caption='[[6z35]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>Full | + | <table><tr><td colspan='2'>Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6Z35 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6Z35 FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6z35 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6z35 OCA], [https://pdbe.org/6z35 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6z35 RCSB], [https://www.ebi.ac.uk/pdbsum/6z35 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6z35 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6z35 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6z35 OCA], [https://pdbe.org/6z35 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6z35 RCSB], [https://www.ebi.ac.uk/pdbsum/6z35 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6z35 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Soluble proteins are universally packed with a hydrophobic core and a polar surface that drive the protein folding process. Yet charged networks within the central protein core are often indispensable for the biological function. Here, we show that natural buried ion-pairs are stabilised by amphiphilic residues that electrostatically shield the charged motif from its surroundings to gain structural stability. To explore this effect, we build artificial proteins with buried ion-pairs by combining directed computational design and biophysical experiments. Our findings illustrate how perturbation in charged networks can introduce structural rearrangements to compensate for desolvation effects. We validate the physical principles by resolving high-resolution atomic structures of the artificial proteins that are resistant towards unfolding at extreme temperatures and harsh chemical conditions. Our findings provide a molecular understanding of functional charged networks and how point mutations may alter the protein's conformational landscape. | ||
| + | |||
| + | Design of buried charged networks in artificial proteins.,Baumgart M, Ropke M, Muhlbauer ME, Asami S, Mader SL, Fredriksson K, Groll M, Gamiz-Hernandez AP, Kaila VRI Nat Commun. 2021 Mar 25;12(1):1895. doi: 10.1038/s41467-021-21909-7. PMID:33767131<ref>PMID:33767131</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 6z35" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
Current revision
De-novo Maquette 2 protein with buried ion-pair
| |||||||||||
