1e4m

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:20, 23 October 2024) (edit) (undo)
 
(15 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1e4m.gif|left|200px]]
 
-
<!--
+
==MYROSINASE FROM SINAPIS ALBA==
-
The line below this paragraph, containing "STRUCTURE_1e4m", creates the "Structure Box" on the page.
+
<StructureSection load='1e4m' size='340' side='right'caption='[[1e4m]], [[Resolution|resolution]] 1.20&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[1e4m]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Sinapis_alba Sinapis alba]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E4M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E4M FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.2&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
{{STRUCTURE_1e4m| PDB=1e4m | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e4m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e4m OCA], [https://pdbe.org/1e4m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e4m RCSB], [https://www.ebi.ac.uk/pdbsum/1e4m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e4m ProSAT]</span></td></tr>
-
 
+
</table>
-
'''MYROSINASE FROM SINAPIS ALBA'''
+
== Function ==
-
 
+
[https://www.uniprot.org/uniprot/MYRA_SINAL MYRA_SINAL] Degradation of glucosinolates (glucose residue linked by a thioglucoside bound to an amino acid derivative) to glucose, sulfate and any of the products: thiocyanates, isothiocyanates, nitriles, epithionitriles or oxazolidine-2-thiones.
-
 
+
== Evolutionary Conservation ==
-
==Overview==
+
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e4/1e4m_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e4m ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
Myrosinase, an S-glycosidase, hydrolyzes plant anionic 1-thio-beta-d-glucosides (glucosinolates) considered part of the plant defense system. Although O-glycosidases are ubiquitous, myrosinase is the only known S-glycosidase. Its active site is very similar to that of retaining O-glycosidases, but one of the catalytic residues in O-glycosidases, a carboxylate residue functioning as the general base, is replaced by a glutamine residue. Myrosinase is strongly activated by ascorbic acid. Several binary and ternary complexes of myrosinase with different transition state analogues and ascorbic acid have been analyzed at high resolution by x-ray crystallography along with a 2-deoxy-2-fluoro-glucosyl enzyme intermediate. One of the inhibitors, d-gluconhydroximo-1,5-lactam, binds simultaneously with a sulfate ion to form a mimic of the enzyme-substrate complex. Ascorbate binds to a site distinct from the glucose binding site but overlapping with the aglycon binding site, suggesting that activation occurs at the second step of catalysis, i.e. hydrolysis of the glycosyl enzyme. A water molecule is placed perfectly for activation by ascorbate and for nucleophilic attack on the covalently trapped 2-fluoro-glucosyl-moiety. Activation of the hydrolysis of the glucosyl enzyme intermediate is further evidenced by the observation that ascorbate enhances the rate of reactivation of the 2-fluoro-glycosyl enzyme, leading to the conclusion that ascorbic acid substitutes for the catalytic base in myrosinase.
Myrosinase, an S-glycosidase, hydrolyzes plant anionic 1-thio-beta-d-glucosides (glucosinolates) considered part of the plant defense system. Although O-glycosidases are ubiquitous, myrosinase is the only known S-glycosidase. Its active site is very similar to that of retaining O-glycosidases, but one of the catalytic residues in O-glycosidases, a carboxylate residue functioning as the general base, is replaced by a glutamine residue. Myrosinase is strongly activated by ascorbic acid. Several binary and ternary complexes of myrosinase with different transition state analogues and ascorbic acid have been analyzed at high resolution by x-ray crystallography along with a 2-deoxy-2-fluoro-glucosyl enzyme intermediate. One of the inhibitors, d-gluconhydroximo-1,5-lactam, binds simultaneously with a sulfate ion to form a mimic of the enzyme-substrate complex. Ascorbate binds to a site distinct from the glucose binding site but overlapping with the aglycon binding site, suggesting that activation occurs at the second step of catalysis, i.e. hydrolysis of the glycosyl enzyme. A water molecule is placed perfectly for activation by ascorbate and for nucleophilic attack on the covalently trapped 2-fluoro-glucosyl-moiety. Activation of the hydrolysis of the glucosyl enzyme intermediate is further evidenced by the observation that ascorbate enhances the rate of reactivation of the 2-fluoro-glycosyl enzyme, leading to the conclusion that ascorbic acid substitutes for the catalytic base in myrosinase.
-
==About this Structure==
+
High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base.,Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B J Biol Chem. 2000 Dec 15;275(50):39385-93. PMID:10978344<ref>PMID:10978344</ref>
-
1E4M is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Sinapis_alba Sinapis alba]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E4M OCA].
+
-
==Reference==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base., Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B, J Biol Chem. 2000 Dec 15;275(50):39385-93. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/10978344 10978344]
+
</div>
 +
<div class="pdbe-citations 1e4m" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Large Structures]]
[[Category: Sinapis alba]]
[[Category: Sinapis alba]]
-
[[Category: Single protein]]
+
[[Category: Burmeister WP]]
-
[[Category: Thioglucosidase]]
+
-
[[Category: Burmeister, W P.]]
+
-
[[Category: Family 1 glycosyl hydrolase]]
+
-
[[Category: Glucosinolate]]
+
-
[[Category: Myrosinase]]
+
-
[[Category: Tim barrel]]
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 14:39:14 2008''
+

Current revision

MYROSINASE FROM SINAPIS ALBA

PDB ID 1e4m

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools