Ionotropic receptors

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:14, 22 January 2023) (edit) (undo)
 
(7 intermediate revisions not shown.)
Line 1: Line 1:
<StructureSection load='3kg2' size='300' side='right' scene='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1' caption='The rat glycosylated glutamate receptor in complex with a competitive antagonist ([[3kg2]])'>
<StructureSection load='3kg2' size='300' side='right' scene='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1' caption='The rat glycosylated glutamate receptor in complex with a competitive antagonist ([[3kg2]])'>
-
'''Under development!!!'''
 
- 
See also [[Receptor]].
See also [[Receptor]].
=Cys-loop receptors=
=Cys-loop receptors=
Line 9: Line 7:
===Serotonin type-3 receptor (5-HT3-R)===
===Serotonin type-3 receptor (5-HT3-R)===
*[[5-hydroxytryptamine receptor#Structural highlights/Specific Function of 5-HT3]]
*[[5-hydroxytryptamine receptor#Structural highlights/Specific Function of 5-HT3]]
 +
<scene name='71/716548/5-ht3_receptor/1'>The 5-HT3 receptor</scene> is a pentameric cation-selective ion channel and plays a role in neuronal excitation to release neurotransmitters from the postsynaptic neuron. Opening of the cation channel causes an influx of sodium and calcium through the receptor pore leading to a membrane depolarization. Five receptor subunits, A to E, have been found in humans but only subunits A and B have been found in rodents. When experimentally expressed in a host, the 5-HT3 receptor is comprised of either A or AB subunits which can result in a homopentameric receptor or a heteropentameric receptor respectively. The A and B subunits are found throughout the brain in areas such as the hippocampus and amygdala. 5-HT3 is a transmembrane channel that is stimulated to open state by the interaction of the receptor with serotonin in the extracellular space. The binding site is comprised of 6 loops from 2 adjacent subunits in the extracellular N-terminal domain. Loops A, B and C form the principal subunit and contain the <scene name='71/716548/5-ht3/1'>important side chains</scene> N128, W183 and Y234. Loops D, E and F form the complementary subunit of the binding site and contain the important side chains W90, Y143 and W195. The transmembrane region is comprised of multiple alpha helical structures and mediates ion flow and ion specificity.
 +
*[[Journal:JBSD:16|The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study]]<ref>DOI 10.1080/07391102.2012.680029</ref>
*[[Journal:JBSD:16|The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study]]<ref>DOI 10.1080/07391102.2012.680029</ref>
Line 22: Line 22:
===Nicotinic acetylcholine receptors===
===Nicotinic acetylcholine receptors===
*[[Nicotinic Acetylcholine Receptor|Nicotinic Acetylcholine Receptors in general]]
*[[Nicotinic Acetylcholine Receptor|Nicotinic Acetylcholine Receptors in general]]
-
*[[Alpha-bungarotoxin]] is a nicotinic cholinergic antagonist that is found within the venom of ''Bungarus multicinctus'', a South-asian snake belonging to a group commonly known as kraits.
+
The receptor is a transmembrane pentameric glycoprotein. It cylindrical in appearance by electron microscopy approximately 16nm in length and 8nm in diameter. The main ion channel is composed of a water pore that runs through the entire length of the protein. If viewed from the synaptic cleft, the protein will look like a pseudo-symmetrical rosette shown in the picture below composed of 10 different alpha and 4 different beta subunits.
 +
*<scene name='58/584302/Cv/1'>Side view</scene>.
 +
*<scene name='58/584302/Cv/2'>View from extracellular side</scene>.
 +
*<scene name='58/584302/Cv/3'>View from cytoplasmic side</scene>.
 +
 
 +
*[[Alpha-bungarotoxin]] is a nicotinic cholinergic antagonist that is found within the venom of ''Bungarus multicinctus'', a South-asian snake.
*[[Binding site of AChR]]
*[[Binding site of AChR]]
*[[Acetylcholine Receptor and its Reaction to Cobra Venom]]
*[[Acetylcholine Receptor and its Reaction to Cobra Venom]]
 +
When cobra venom is introduced into the body is moves along the bloodstream to a diaphragm muscle. It works as a postsynaptic neurotoxin binding to the receptor as an extracellular ligand by interacting with OH group leaving the acetylcholine channel open which releases ions used in creating an action potential. There must be 5 molecules of cobra toxin (red) to block the receptor (blue) as each molecule binds with an individual alpha chain on the acetylcholine receptor. The 2nd image depicts an individual toxin binding with one chain on the receptor, both in the same color. <scene name='77/778333/Cobra_snake_venom/3'>Cobra Venom Interaction with Acetylcholine Receptor</scene>. This representation shows each molecule of the <scene name='77/778333/Venom_receptor_piece/1'>Cobra toxin binding to one chain of the receptor</scene>.
==Anionic cys-loop receptors==
==Anionic cys-loop receptors==
===GABA<sub>A</sub> receptors===
===GABA<sub>A</sub> receptors===
-
*[[4cof]] – hGABAA subunit β-3 - human<br />
+
 
-
*[[6i53]], [[6hup]], [[6huo]], [[6huk]], [[6huj]], [[6hug]] – hGABAA subunits β-3 + α-1+γ-2 + megabody – Cryo EM<br />
+
See [[GABAA receptor]]
-
*[[6d6u]], [[6d6t]] – hGABAA subunits β-3 +α-1+γ-2 + antibody + GABA + flumazenil – Cryo EM<br />
+
-
*[[6a96]] – hGABAA subunits β-3 +α-5 + nanobody + GABA – Cryo EM<br />
+
-
*[[6hsn]] – rGABAA subunit α-3 + gephyrin + ADP - rat<br />
+
-
*[[6dw1]], [[6dw0]] – rGABAA subunits β-1 +α-1+γ-2 + GABA – Cryo EM<br />
+
=[[Ionotropic Glutamate Receptors]]=
=[[Ionotropic Glutamate Receptors]]=
==AMPA glutamate receptor==
==AMPA glutamate receptor==
*[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
*[[Molecular Playground/Glutamate Receptor|AMPA glutamate receptor]] by [http://www.umass.edu/cbi/ University of Massachusetts Amherst Chemistry-Biology Interface Program] at UMass Amherst and on display at the [http://www.molecularplayground.org/ Molecular Playground].
 +
Full view of the glutamate receptor shows the overall structure (N-terminal, ligand-binding and transmembrane domains) in <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_black_background/6'>ribbon</scene> and <scene name='User:Mariel_Feliciano/sandbox_1/Full_view_spacefill/2'>spacefilling</scene> models. <scene name='User:Mariel_Feliciano/sandbox_1/Amino_terminal_domains/2'>N-terminal domain</scene> is a part of the extracellular domain. This domain is implicated in receptor assembly, trafficking, and localization.
 +
*<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains/5'>Transmembrane Domain</scene>.
 +
*<scene name='Molecular_Playground/Glutamate_Receptor/Transmembrane_domains_pore2/1'>Transmembrane Domain, other representaion</scene>. This domain widens in response to glutamate binding allowing for positive ions to pass through the post-synaptic membrane.
 +
*<scene name='Molecular_Playground/Glutamate_Receptor/Glu_antagoinist/2'>Receptor antagonist 2K200225 binding site</scene>.
 +
*<scene name='Molecular_Playground/Glutamate_Receptor/Glu_agonist_/2'>Glutamate binding site</scene>.
*[[Glutamate receptor (GluA2)]]
*[[Glutamate receptor (GluA2)]]
The homomeric rat GluA2 receptor <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1'>has 4 subunits</scene> arranged in a 'Y'-shape with the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Meas3kg2/1'> 'top' being about 3 times the width of the 'bottom'</scene>. This structure is a functional homotetramer of the AMPA-subtype; native ionotropic glutamate receptors are almost exclusively heterotetramers.&nbsp;{{Link Toggle FancyCartoonHighQualityView}}.
The homomeric rat GluA2 receptor <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1'>has 4 subunits</scene> arranged in a 'Y'-shape with the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Meas3kg2/1'> 'top' being about 3 times the width of the 'bottom'</scene>. This structure is a functional homotetramer of the AMPA-subtype; native ionotropic glutamate receptors are almost exclusively heterotetramers.&nbsp;{{Link Toggle FancyCartoonHighQualityView}}.
Line 112: Line 119:
'''Inward rectifier KCh:'''
'''Inward rectifier KCh:'''
-
**[[6c3p]], [[6c3o]] - hIRK 11 + SUR1 + ATP + ADP – Cryo EM<br />
+
See [[Potassium channel 3D structures]]
-
**[[6baa]] - hIRK 11 + SUR1 + ATP + diabetes drug – Cryo EM<br />
+
-
**[[3ukm]] – hIRK TWIK-1<br />
+
-
**[[3um7]] – hIRK TRAAK<br />
+
-
**[[4ruf]], [[4rue]] - hIRK TRAAK (mutant)<br />
+
-
**[[4wfh]], [[4wfg]], [[4wfe]], [[4wff]] - hIRK TRAAK + antibody<br />
+
-
**[[4i9w]] - hIRK TRAAK (mutant) + antibody<br />
+
-
**[[6pz9]], [[6pza]], [[5twv]] - rIRK 11 + SUR1 + ATP + diabetes drug – Cryo EM<br />
+
-
**[[1u4f]],[[3agw]] - mIRK 2 cytoplasmic domain<br />
+
-
**[[2xky]] - mIRK 2 cytoplasmic domain - EM<br />
+
-
**[[2gix]], [[3vsq]] - mIRK 2 cytoplasmic domain (mutant)<br />
+
-
**[[2e4f]] - mIRK 2 fragment<br />
+
-
**[[1n9p]], [[1u4e]] - mIRK 1 cytoplasmic domain<br />
+
-
**[[3k6n]] - mIRK 1 cytoplasmic domain (mutant)<br />
+
-
**[[5um4]] - mIRK 3.1 (mutant)<br />
+
-
**[[3at8]], [[3at9]], [[3ata]], [[3atb]], [[3atd]], [[3ate]], [[3atf]], [[3auw]], [[3syo]] - mIRK 3.2<br />
+
-
**[[6xis]], [[6xit]] - mIRK 3.2 – Cryo EM<br />
+
-
**[[3syc]], [[3syp]] - mIRK 3.2 (mutant) <br />
+
-
**[[3sya]] - mIRK 3.2 + PIP2<br />
+
-
**[[3syq]] - mIRK 3.2 (mutant) + PIP2<br />
+
-
**[[4kfm]] - mIRK 3.2 + guanine nucleotide-biding protein<br />
+
-
**[[5wua]], [[5twv]] - mIRK 11 + SUR1 - Cryo EM<br />
+
-
**[[5ywc]], [[5ywb]] - mIRK 11 + SUR1 + ADP – Cryo EM<br />
+
-
**[[5ywa]], [[5yw9]], [[5yw8]] - mIRK 11 + SUR1 + ATP – Cryo EM<br />
+
-
**[[5ykg]], [[5ykf]], [[5yke]], [[6jb1]] - mIRK 11 + SUR1 + ATP + diabetes drug – Cryo EM<br />
+
-
**[[6m85]] – cIRK 2.2<br />
+
-
**[[3spj]], [[6m86]] – cIRK 2.2 (mutant)<br />
+
-
**[[3spc]] – cIRK 2.2 + DGPP <br />
+
-
**[[3spg]], [[3sph]], [[5kum]], [[5kuk]], [[6m84]] – cIRK 2.2 (mutant) + PIP2<br />
+
-
**[[3spi]] – cIRK 2.2 + PIP2<br />
+
-
**[[7cal]] - AtIRK KAT1 – Cryo EM<br />
+
-
**[[1xl4]], [[1xl6]], [[2wlk]], [[2x6a]], [[2x6b]], [[2x6c]], [[6o9u]] - MmIRK KIRBAC3.1<br />
+
-
**[[4lp8]], [[6o9t]], [[6o9v]] - MmIRK KIRBAC3.1 (mutant) <br />
+
-
**[[3zrs]] – MmIRK 10<br />
+
-
**[[1p7b]] - BpIRK C-terminal<br />
+
-
 
+
</StructureSection>
</StructureSection>
==References==
==References==
<references/>
<references/>
 +
[[Category:Topic Page]]

Current revision

The rat glycosylated glutamate receptor in complex with a competitive antagonist (3kg2)

Drag the structure with the mouse to rotate

References

  1. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  2. Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem. 2010 Nov;45(11):4746-60. Epub 2010 Jul 27. PMID:20724042 doi:10.1016/j.ejmech.2010.07.039
  3. Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis--an improved methodological approach. J Comput Chem. 2007 Feb;28(3):644-54. PMID:17195156 doi:10.1002/jcc.20566
  4. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  5. De Rienzo F, Del Cadia M, Menziani MC. A first step towards the understanding of the 5-HT(3) receptor subunit heterogeneity from a computational point of view. Phys Chem Chem Phys. 2012 Sep 28;14(36):12625-36. Epub 2012 Aug 9. PMID:22880201 doi:10.1039/c2cp41028a
  6. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  7. Turski L, Huth A, Sheardown M, McDonald F, Neuhaus R, Schneider HH, Dirnagl U, Wiegand F, Jacobsen P, Ottow E. ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10960-5. PMID:9724812
  8. Walters MR, Kaste M, Lees KR, Diener HC, Hommel M, De Keyser J, Steiner H, Versavel M. The AMPA antagonist ZK 200775 in patients with acute ischaemic stroke: a double-blind, multicentre, placebo-controlled safety and tolerability study. Cerebrovasc Dis. 2005;20(5):304-9. Epub 2005 Aug 30. PMID:16131799 doi:10.1159/000087929
  9. Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161-8. PMID:7539962
  10. Wood MW, VanDongen HM, VanDongen AM. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4882-6. PMID:7761417
  11. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69-77. PMID:9525859

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Michal Harel

Personal tools