Receptor tyrosine kinases

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:31, 7 June 2021) (edit) (undo)
 
Line 2: Line 2:
Receptor tyrosine kinases (RTKs) are part of the larger family of protein [[Tyrosine kinase|tyrosine kinases]]. They are the high-affinity cell surface receptors for many polypeptide [[Growth factors|growth factors]], cytokines, and [[Hormone|hormones]]. Approximately 20 different RTK classes have been identified.<ref>PMID:26579483</ref>
Receptor tyrosine kinases (RTKs) are part of the larger family of protein [[Tyrosine kinase|tyrosine kinases]]. They are the high-affinity cell surface receptors for many polypeptide [[Growth factors|growth factors]], cytokines, and [[Hormone|hormones]]. Approximately 20 different RTK classes have been identified.<ref>PMID:26579483</ref>
-
See also [[Kinase-linked, enzyme-linked and related receptors]].
+
See also [[Kinase-linked, enzyme-linked and related receptors]] and [[Receptor]].
==RTK class I [[Epidermal Growth Factor Receptor]] family==
==RTK class I [[Epidermal Growth Factor Receptor]] family==
[[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. EGFRs are overexpressed in many types of human carcinomas including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signaling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. The <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins.
[[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. EGFRs are overexpressed in many types of human carcinomas including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signaling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. The <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins.

Current revision

Solved Structures of Ephrin Type-A Receptors, 1dq8

Drag the structure with the mouse to rotate

References

  1. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  2. Wu J, Tseng YD, Xu CF, Neubert TA, White MF, Hubbard SR. Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol. 2008 Mar;15(3):251-8. Epub 2008 Feb 17. PMID:18278056 doi:10.1038/nsmb.1388
  3. Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR, Butrico G, Marcucci MJ, Zhang D, Abulizi A, Zhang XM, Philbrick W, Hubbard SR, Jurczak MJ, Samuel VT, Rinehart J, Shulman GI. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest. 2016 Nov 1;126(11):4361-4371. doi: 10.1172/JCI86013. Epub 2016 Oct, 17. PMID:27760050 doi:http://dx.doi.org/10.1172/JCI86013
  4. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12654-9. Epub 2003 Oct 14. PMID:14559966 doi:10.1073/pnas.1734128100
  5. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12654-9. Epub 2003 Oct 14. PMID:14559966 doi:10.1073/pnas.1734128100
  6. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12654-9. Epub 2003 Oct 14. PMID:14559966 doi:10.1073/pnas.1734128100
  7. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S. Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A. 2010 May 26. PMID:20505120
  8. Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol. 2014 Apr 22. pii: S0022-2836(14)00198-3. doi:, 10.1016/j.jmb.2014.04.014. PMID:24768818 doi:http://dx.doi.org/10.1016/j.jmb.2014.04.014
  9. Hung IC, Chang SS, Chang PC, Lee CC, Chen CY. Memory enhancement by traditional Chinese medicine? J Biomol Struct Dyn. 2012 Dec 19. PMID:23249175 doi:10.1080/07391102.2012.741052

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools