|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==NMR Structure of the C-terminal Coiled-Coil Domain of CIN85== | | ==NMR Structure of the C-terminal Coiled-Coil Domain of CIN85== |
- | <StructureSection load='2n64' size='340' side='right'caption='[[2n64]], [[NMR_Ensembles_of_Models | 30 NMR models]]' scene=''> | + | <StructureSection load='2n64' size='340' side='right'caption='[[2n64]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2n64]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2N64 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2N64 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2n64]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2N64 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2N64 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[5abs|5abs]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SH3KBP1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2n64 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n64 OCA], [https://pdbe.org/2n64 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2n64 RCSB], [https://www.ebi.ac.uk/pdbsum/2n64 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2n64 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2n64 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n64 OCA], [https://pdbe.org/2n64 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2n64 RCSB], [https://www.ebi.ac.uk/pdbsum/2n64 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2n64 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/SH3K1_HUMAN SH3K1_HUMAN]] Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through a association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration.<ref>PMID:12177062</ref> <ref>PMID:11894095</ref> <ref>PMID:11894096</ref> <ref>PMID:12771190</ref> <ref>PMID:12734385</ref> <ref>PMID:15090612</ref> <ref>PMID:16256071</ref> <ref>PMID:15707590</ref> <ref>PMID:16177060</ref> <ref>PMID:21834987</ref>
| + | [https://www.uniprot.org/uniprot/SH3K1_HUMAN SH3K1_HUMAN] Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through a association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration.<ref>PMID:12177062</ref> <ref>PMID:11894095</ref> <ref>PMID:11894096</ref> <ref>PMID:12771190</ref> <ref>PMID:12734385</ref> <ref>PMID:15090612</ref> <ref>PMID:16256071</ref> <ref>PMID:15707590</ref> <ref>PMID:16177060</ref> <ref>PMID:21834987</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | The adaptor molecule Cbl-interacting protein of 85 kD (CIN85) regulates signaling from a number of cell surface receptors, such as growth factor receptors and antigen receptors on lymphocytes. Because of its multidomain structure, CIN85 is thought to act as a classical adaptor protein that connects functionally distinct components of a given signaling pathway through diverse protein domains. However, we found that in B lymphocytes, CIN85 functions to oligomerize SLP-65, which is the central effector protein of the B cell receptor (BCR). Therefore, CIN85 trimerizes through a carboxyl-terminal, coiled-coil domain. The multiple Src homology 3 (SH3) domains of trimeric CIN85 molecules associated with multiple SLP-65 molecules, which recruited further CIN85 trimers, thereby perpetuating the oligomerization process. Formation of this oligomeric signaling complex in resting B cells rendered the cells poised for the efficient initiation of intracellular signaling upon BCR stimulation. Our data suggest that the functionality of signaling cascades does not rely solely on the qualitative linkage of their various components but requires a critical number of effectors to become concentrated in signaling complexes.
| + | |
- | | + | |
- | The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation.,Kuhn J, Wong LE, Pirkuliyeva S, Schulz K, Schwiegk C, Funfgeld KG, Keppler S, Batista FD, Urlaub H, Habeck M, Becker S, Griesinger C, Wienands J Sci Signal. 2016 Jun 28;9(434):ra66. doi: 10.1126/scisignal.aad6275. PMID:27353366<ref>PMID:27353366</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 2n64" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Becker, S]] | + | [[Category: Becker S]] |
- | [[Category: Griesinger, C]] | + | [[Category: Griesinger C]] |
- | [[Category: Habeck, M]] | + | [[Category: Habeck M]] |
- | [[Category: Wong, L E]] | + | [[Category: Wong LE]] |
- | [[Category: Adaptor protein]]
| + | |
- | [[Category: B-cell antigen receptor signaling]]
| + | |
- | [[Category: Coiled-coil domain]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
SH3K1_HUMAN Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through a association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
References
- ↑ Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I. CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J Biol Chem. 2002 Oct 18;277(42):39666-72. Epub 2002 Aug 12. PMID:12177062 doi:10.1074/jbc.M205535200
- ↑ Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature. 2002 Mar 14;416(6877):183-7. PMID:11894095 doi:10.1038/416183a
- ↑ Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002 Mar 14;416(6877):187-90. PMID:11894096 doi:10.1038/416187a
- ↑ Schmidt MH, Chen B, Randazzo LM, Bogler O. SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion. J Cell Sci. 2003 Jul 15;116(Pt 14):2845-55. Epub 2003 May 27. PMID:12771190 doi:10.1242/jcs.00522
- ↑ Schmidt MH, Furnari FB, Cavenee WK, Bogler O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6505-10. Epub 2003 May 6. PMID:12734385 doi:10.1073/pnas.1031790100
- ↑ Kowanetz K, Husnjak K, Holler D, Kowanetz M, Soubeyran P, Hirsch D, Schmidt MH, Pavelic K, De Camilli P, Randazzo PA, Dikic I. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol Biol Cell. 2004 Jul;15(7):3155-66. Epub 2004 Apr 16. PMID:15090612 doi:10.1091/mbc.E03-09-0683
- ↑ Aissouni Y, Zapart G, Iovanna JL, Dikic I, Soubeyran P. CIN85 regulates the ability of MEKK4 to activate the p38 MAP kinase pathway. Biochem Biophys Res Commun. 2005 Dec 16;338(2):808-14. Epub 2005 Oct 18. PMID:16256071 doi:10.1016/j.bbrc.2005.10.032
- ↑ Narita T, Nishimura T, Yoshizaki K, Taniyama T. CIN85 associates with TNF receptor 1 via Src and modulates TNF-alpha-induced apoptosis. Exp Cell Res. 2005 Mar 10;304(1):256-64. Epub 2004 Dec 1. PMID:15707590 doi:S0014-4827(04)00682-2
- ↑ Molfetta R, Belleudi F, Peruzzi G, Morrone S, Leone L, Dikic I, Piccoli M, Frati L, Torrisi MR, Santoni A, Paolini R. CIN85 regulates the ligand-dependent endocytosis of the IgE receptor: a new molecular mechanism to dampen mast cell function. J Immunol. 2005 Oct 1;175(7):4208-16. PMID:16177060
- ↑ Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011 Aug 11;9:54. doi: 10.1186/1741-7007-9-54. PMID:21834987 doi:10.1186/1741-7007-9-54
|