|
|
Line 3: |
Line 3: |
| <StructureSection load='2w5f' size='340' side='right'caption='[[2w5f]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='2w5f' size='340' side='right'caption='[[2w5f]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2w5f]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"ruminiclostridium_thermocellum"_(viljoen_et_al._1926)_yutin_and_galperin_2013 "ruminiclostridium thermocellum" (viljoen et al. 1926) yutin and galperin 2013]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2W5F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2W5F FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2w5f]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetivibrio_thermocellus Acetivibrio thermocellus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2W5F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2W5F FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1dyo|1dyo]], [[2ccl|2ccl]], [[1h6x|1h6x]], [[1wb6|1wb6]], [[1ohz|1ohz]], [[1h6y|1h6y]], [[2wys|2wys]], [[1gkl|1gkl]], [[1wb5|1wb5]], [[1gkk|1gkk]], [[2wze|2wze]], [[1wb4|1wb4]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=PRD_900117:4beta-beta-xylotriose'>PRD_900117</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Endo-1,4-beta-xylanase Endo-1,4-beta-xylanase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.8 3.2.1.8] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2w5f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2w5f OCA], [https://pdbe.org/2w5f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2w5f RCSB], [https://www.ebi.ac.uk/pdbsum/2w5f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2w5f ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2w5f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2w5f OCA], [https://pdbe.org/2w5f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2w5f RCSB], [https://www.ebi.ac.uk/pdbsum/2w5f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2w5f ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/XYNY_ACETH XYNY_ACETH] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Endo-1,4-beta-xylanase]] | + | [[Category: Acetivibrio thermocellus]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Fontes, C M.G A]] | + | [[Category: Fontes CMGA]] |
- | [[Category: Najmudin, S]] | + | [[Category: Najmudin S]] |
- | [[Category: Pinheiro, B A]] | + | [[Category: Pinheiro BA]] |
- | [[Category: Prates, J A.M]] | + | [[Category: Prates JAM]] |
- | [[Category: Romao, M J]] | + | [[Category: Romao MJ]] |
- | [[Category: Cellulosome]]
| + | |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Xylan degradation]]
| + | |
| Structural highlights
Function
XYNY_ACETH
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In general, plant cell wall degrading enzymes are modular proteins containing catalytic domains linked to one or more non-catalytic carbohydrate-binding modules (CBMs). Xyn10B from Clostridium thermocellum is a typical modular enzyme containing an N-terminal family 22 CBM (CBM22-1), a family 10 glycoside hydrolase catalytic domain (GH10), a second CBM22 (CBM22-2), a dockerin sequence and a C-terminal family 1 carbohydrate esterase (CE1) catalytic domain. The structure of the N-terminal bi-modular CBM22-1-GH10 component of Xyn10B has been determined using a SeMet derivative by SAD to 2.5A. The data was extended to 2.0A for the non-SeMet mutant complexed with xylohexaose. CBM22-1-GH10 is a 60kDa protein with an E337A mutation to render the GH10 subunit inactive. Three of the six xylose residues of xylohexaose are shown to be bound in the inactivated GH10 substrate binding cleft, with the other three sugars presumably disordered in the solvent channel. The protein is a dimer in the asymmetric unit with extensive surface contacts between the two GH10 modules and between the CBM22-1 and GH10 modules. Residues from helix H4 of the GH10 module provide the major contacts by fitting into the minor groove of the CBM22-1 module. The orientation of CBM22-1 is such that it would allow the substrate to be loosely bound and subsequently delivered to the active site in a processive manner.
Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: Crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose.,Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romao MJ, Fontes CM J Struct Biol. 2010 Aug 1. PMID:20682344[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romao MJ, Fontes CM. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: Crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. J Struct Biol. 2010 Aug 1. PMID:20682344 doi:10.1016/j.jsb.2010.07.009
|