1hiq
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==PARADOXICAL STRUCTURE AND FUNCTION IN A MUTANT HUMAN INSULIN ASSOCIATED WITH DIABETES MELLITUS== | ==PARADOXICAL STRUCTURE AND FUNCTION IN A MUTANT HUMAN INSULIN ASSOCIATED WITH DIABETES MELLITUS== | ||
- | <StructureSection load='1hiq' size='340' side='right'caption='[[1hiq | + | <StructureSection load='1hiq' size='340' side='right'caption='[[1hiq]]' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1hiq]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[1hiq]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HIQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HIQ FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hiq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hiq OCA], [https://pdbe.org/1hiq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hiq RCSB], [https://www.ebi.ac.uk/pdbsum/1hiq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hiq ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hiq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hiq OCA], [https://pdbe.org/1hiq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hiq RCSB], [https://www.ebi.ac.uk/pdbsum/1hiq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hiq ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
- | + | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> | |
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 21: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hiq ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hiq ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The solution structure of a diabetes-associated mutant human insulin (insulin Los Angeles; PheB24-->Ser) was determined by 13C-edited NMR spectroscopy and distance-geometry/simulated annealing calculations. Among vertebrate insulins PheB24 is invariant, and in crystal structures the aromatic ring appears to anchor the putative receptor-binding surface through long-range packing interactions in the hydrophobic core. B24 substitutions are of particular interest in relation to the mechanism of receptor binding. In one analogue ([GlyB24]insulin), partial unfolding of the B chain has been observed with paradoxical retention of near-native bioactivity. The present study of [SerB24]insulin extends this observation: relative to [GlyB24]insulin, near-native structure is restored despite significant loss of function. To our knowledge, our results provide the first structural study of a diabetes-associated mutant insulin and support the hypothesis that insulin undergoes a change in conformation on receptor binding. | ||
- | |||
- | Paradoxical structure and function in a mutant human insulin associated with diabetes mellitus.,Hua QX, Shoelson SE, Inouye K, Weiss MA Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):582-6. PMID:8421693<ref>PMID:8421693</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1hiq" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 36: | Line 28: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Hua | + | [[Category: Hua QX]] |
- | [[Category: Inouye | + | [[Category: Inouye K]] |
- | [[Category: Shoelson | + | [[Category: Shoelson SE]] |
- | [[Category: Weiss | + | [[Category: Weiss MA]] |
- | + |
Current revision
PARADOXICAL STRUCTURE AND FUNCTION IN A MUTANT HUMAN INSULIN ASSOCIATED WITH DIABETES MELLITUS
|