7s6g
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 7s6g is ON HOLD Authors: Shah, B.S., Mikolajek, H., Orr, C.M., Mykhaylyk, V., Owens, R.J., Paulsen, I.T. Description: Crystal structure of PhnD fro...) |
|||
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal structure of PhnD from Synechococcus MITS9220 in complex with phosphate== | |
+ | <StructureSection load='7s6g' size='340' side='right'caption='[[7s6g]], [[Resolution|resolution]] 2.02Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[7s6g]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synechococcus_sp._MIT_S9220 Synechococcus sp. MIT S9220]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7S6G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7S6G FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.02Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7s6g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7s6g OCA], [https://pdbe.org/7s6g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7s6g RCSB], [https://www.ebi.ac.uk/pdbsum/7s6g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7s6g ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/A0A7G8IVX7_9SYNE A0A7G8IVX7_9SYNE] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions. | ||
- | + | Marine picocyanobacterial PhnD1 shows specificity for various phosphorus sources but likely represents a constitutive inorganic phosphate transporter.,Shah BS, Ford BA, Varkey D, Mikolajek H, Orr C, Mykhaylyk V, Owens RJ, Paulsen IT ISME J. 2023 Jul;17(7):1040-1051. doi: 10.1038/s41396-023-01417-w. Epub 2023 Apr , 22. PMID:37087502<ref>PMID:37087502</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: | + | <div class="pdbe-citations 7s6g" style="background-color:#fffaf0;"></div> |
- | [[Category: | + | |
- | [[Category: | + | ==See Also== |
- | [[Category: | + | *[[ABC transporter 3D structures|ABC transporter 3D structures]] |
- | [[Category: | + | == References == |
- | [[Category: | + | <references/> |
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Synechococcus sp. MIT S9220]] | ||
+ | [[Category: Mikolajek H]] | ||
+ | [[Category: Mykhaylyk V]] | ||
+ | [[Category: Orr CM]] | ||
+ | [[Category: Owens RJ]] | ||
+ | [[Category: Paulsen IT]] | ||
+ | [[Category: Shah BS]] |
Current revision
Crystal structure of PhnD from Synechococcus MITS9220 in complex with phosphate
|