1rrp
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1rrp' size='340' side='right'caption='[[1rrp]], [[Resolution|resolution]] 2.96Å' scene=''> | <StructureSection load='1rrp' size='340' side='right'caption='[[1rrp]], [[Resolution|resolution]] 2.96Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1rrp]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[1rrp]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RRP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RRP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.96Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rrp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rrp OCA], [https://pdbe.org/1rrp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rrp RCSB], [https://www.ebi.ac.uk/pdbsum/1rrp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rrp ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rrp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rrp OCA], [https://pdbe.org/1rrp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rrp RCSB], [https://www.ebi.ac.uk/pdbsum/1rrp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rrp ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Disease == | ||
- | [[https://www.uniprot.org/uniprot/RBP2_HUMAN RBP2_HUMAN]] Defects in RANBP2 are the cause of encephalopathy acute infection-induced type 3 (IIAE3) [MIM:[https://omim.org/entry/608033 608033]]. A rapidly progressive encephalopathy manifesting in susceptibile individuals with seizures and coma. It can occur within days in otherwise healthy children after common viral infections such as influenza and parainfluenza, without evidence of viral infection of the brain or inflammatory cell infiltration. Brain T2-weighted magnetic resonance imaging reveals characteristic symmetric lesions present in the thalami, pons and brainstem. Note=Mutations in the RANBP2 gene predispose to IIAE3, but by themselves are insufficient to make the phenotype fully penetrant; additional genetic and environmental factors are required (PubMed:19118815).<ref>PMID:19118815</ref> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/RAN_HUMAN RAN_HUMAN] GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref> Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 21: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rrp ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rrp ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-beta-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran x GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran x GppNHp resembles the canonical Ras GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular 'embrace' enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran x GTP from importin-beta-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein-protein interaction for a Ras-related protein. | ||
- | |||
- | Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport.,Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A Nature. 1999 Mar 4;398(6722):39-46. PMID:10078529<ref>PMID:10078529</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1rrp" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 37: | Line 27: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Kuhlmann | + | [[Category: Kuhlmann J]] |
- | [[Category: Nishimoto | + | [[Category: Nishimoto T]] |
- | [[Category: Nowak | + | [[Category: Nowak C]] |
- | [[Category: Vetter | + | [[Category: Vetter IR]] |
- | [[Category: Wittinghofer | + | [[Category: Wittinghofer A]] |
- | + | ||
- | + |
Current revision
STRUCTURE OF THE RAN-GPPNHP-RANBD1 COMPLEX
|