|
|
Line 3: |
Line 3: |
| <StructureSection load='7b2e' size='340' side='right'caption='[[7b2e]], [[Resolution|resolution]] 2.80Å' scene=''> | | <StructureSection load='7b2e' size='340' side='right'caption='[[7b2e]], [[Resolution|resolution]] 2.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[7b2e]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Metea Metea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B2E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B2E FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7b2e]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Methylorubrum_extorquens_AM1 Methylorubrum extorquens AM1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B2E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B2E FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TPP:THIAMINE+DIPHOSPHATE'>TPP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[7ayg|7ayg]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TPP:THIAMINE+DIPHOSPHATE'>TPP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MexAM1_META1p0990 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272630 METEA])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Oxalyl-CoA_decarboxylase Oxalyl-CoA decarboxylase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.1.8 4.1.1.8] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b2e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b2e OCA], [https://pdbe.org/7b2e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b2e RCSB], [https://www.ebi.ac.uk/pdbsum/7b2e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b2e ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b2e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b2e OCA], [https://pdbe.org/7b2e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b2e RCSB], [https://www.ebi.ac.uk/pdbsum/7b2e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b2e ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/C5AX46_METEA C5AX46_METEA] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Metea]] | + | [[Category: Methylorubrum extorquens AM1]] |
- | [[Category: Oxalyl-CoA decarboxylase]]
| + | [[Category: Burgener S]] |
- | [[Category: Burgener, S]] | + | [[Category: Erb TJ]] |
- | [[Category: Erb, T J]] | + | [[Category: Nattermann M]] |
- | [[Category: Nattermann, M]] | + | [[Category: Pfister P]] |
- | [[Category: Pfister, P]] | + | [[Category: Zarzycki J]] |
- | [[Category: Zarzycki, J]] | + | |
- | [[Category: Carboxylase]]
| + | |
- | [[Category: Decarboxylase]]
| + | |
- | [[Category: Formyl-coa]]
| + | |
- | [[Category: Ligase]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Mandelyl-coa]]
| + | |
- | [[Category: Oxalyl-coa]]
| + | |
| Structural highlights
Function
C5AX46_METEA
Publication Abstract from PubMed
One of the biggest challenges to realize a circular carbon economy is the synthesis of complex carbon compounds from one-carbon (C1) building blocks. Since the natural solution space of C1-C1 condensations is limited to highly complex enzymes, the development of more simple and robust biocatalysts may facilitate the engineering of C1 assimilation routes. Thiamine diphosphate-dependent enzymes harbor great potential for this task, due to their ability to create C-C bonds. Here, we employed structure-guided iterative saturation mutagenesis to convert oxalyl-CoA decarboxylase (OXC) from Methylobacterium extorquens into a glycolyl-CoA synthase (GCS) that allows for the direct condensation of the two C1 units formyl-CoA and formaldehyde. A quadruple variant MeOXC4 showed a 100000-fold switch between OXC and GCS activities, a 200-fold increase in the GCS activity compared to the wild type, and formaldehyde affinity that is comparable to natural formaldehyde-converting enzymes. Notably, MeOCX4 outcompetes all other natural and engineered enzymes for C1-C1 condensations by more than 40-fold in catalytic efficiency and is highly soluble in Escherichia coli. In addition to the increased GCS activity, MeOXC4 showed up to 300-fold higher activity than the wild type toward a broad range of carbonyl acceptor substrates. When applied in vivo, MeOXC4 enables the production of glycolate from formaldehyde, overcoming the current bottleneck of C1-C1 condensation in whole-cell bioconversions and paving the way toward synthetic C1 assimilation routes in vivo.
Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism.,Nattermann M, Burgener S, Pfister P, Chou A, Schulz L, Lee SH, Paczia N, Zarzycki J, Gonzalez R, Erb TJ ACS Catal. 2021 May 7;11(9):5396-5404. doi: 10.1021/acscatal.1c01237. Epub 2021, Apr 20. PMID:34484855[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Nattermann M, Burgener S, Pfister P, Chou A, Schulz L, Lee SH, Paczia N, Zarzycki J, Gonzalez R, Erb TJ. Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism. ACS Catal. 2021 May 7;11(9):5396-5404. doi: 10.1021/acscatal.1c01237. Epub 2021, Apr 20. PMID:34484855 doi:http://dx.doi.org/10.1021/acscatal.1c01237
|