|
|
Line 3: |
Line 3: |
| <StructureSection load='1vfg' size='340' side='right'caption='[[1vfg]], [[Resolution|resolution]] 2.80Å' scene=''> | | <StructureSection load='1vfg' size='340' side='right'caption='[[1vfg]], [[Resolution|resolution]] 2.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1vfg]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"aquifex_aeolicus"_huber_and_stetter_2001 "aquifex aeolicus" huber and stetter 2001]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VFG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1VFG FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1vfg]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus] and [https://en.wikipedia.org/wiki/Thermotoga_maritima Thermotoga maritima]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1VFG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1VFG FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1miw|1miw]], [[1ou5|1ou5]], [[1uet|1uet]], [[1r89|1r89]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Polynucleotide_adenylyltransferase Polynucleotide adenylyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.19 2.7.7.19] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1vfg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1vfg OCA], [https://pdbe.org/1vfg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1vfg RCSB], [https://www.ebi.ac.uk/pdbsum/1vfg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1vfg ProSAT], [https://www.topsan.org/Proteins/RSGI/1vfg TOPSAN]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1vfg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1vfg OCA], [https://pdbe.org/1vfg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1vfg RCSB], [https://www.ebi.ac.uk/pdbsum/1vfg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1vfg ProSAT], [https://www.topsan.org/Proteins/RSGI/1vfg TOPSAN]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/AATNT_AQUAE AATNT_AQUAE] tRNA nucleotidyltransferase involved in the synthesis of the tRNA CCA terminus. Adds the terminal adenosine residue to tRNA (PubMed:11701927, PubMed:25914059). Can incorporate CMP into tRNA ending with C74C75 (tRNACC), with very weak efficiency (PubMed:25914059).<ref>PMID:11701927</ref> <ref>PMID:25914059</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aquifex aeolicus huber and stetter 2001]] | + | [[Category: Aquifex aeolicus]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Polynucleotide adenylyltransferase]] | + | [[Category: Thermotoga maritima]] |
- | [[Category: Fukai, S]] | + | [[Category: Fukai S]] |
- | [[Category: Ishitani, R]] | + | [[Category: Ishitani R]] |
- | [[Category: Nureki, O]] | + | [[Category: Nureki O]] |
- | [[Category: Structural genomic]]
| + | [[Category: Takeuchi N]] |
- | [[Category: Takeuchi, N]] | + | [[Category: Tomita K]] |
- | [[Category: Tomita, K]] | + | [[Category: Ueda T]] |
- | [[Category: Ueda, T]] | + | [[Category: Vassylyev DG]] |
- | [[Category: Vassylyev, D G]] | + | |
- | [[Category: Rna]]
| + | |
- | [[Category: Rsgi]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Transferase-rna complex]]
| + | |
| Structural highlights
Function
AATNT_AQUAE tRNA nucleotidyltransferase involved in the synthesis of the tRNA CCA terminus. Adds the terminal adenosine residue to tRNA (PubMed:11701927, PubMed:25914059). Can incorporate CMP into tRNA ending with C74C75 (tRNACC), with very weak efficiency (PubMed:25914059).[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.
Structural basis for template-independent RNA polymerization.,Tomita K, Fukai S, Ishitani R, Ueda T, Takeuchi N, Vassylyev DG, Nureki O Nature. 2004 Aug 5;430(7000):700-4. PMID:15295603[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Tomita K, Weiner AM. Collaboration between CC 3'-terminal CCA of tRNA in Aquifex aeolicus. Science. 2001 Nov 9;294(5545):1334-6. PMID:11701927 doi:10.1126/science.1063816
- ↑ Yamashita S, Martinez A, Tomita K. Measurement of Acceptor-TPsiC Helix Length of tRNA for Terminal A76-Addition by A-Adding Enzyme. Structure. 2015 May 5;23(5):830-42. doi: 10.1016/j.str.2015.03.013. Epub 2015 Apr, 23. PMID:25914059 doi:http://dx.doi.org/10.1016/j.str.2015.03.013
- ↑ Tomita K, Fukai S, Ishitani R, Ueda T, Takeuchi N, Vassylyev DG, Nureki O. Structural basis for template-independent RNA polymerization. Nature. 2004 Aug 5;430(7000):700-4. PMID:15295603 doi:10.1038/nature02712
|