|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1u0n' size='340' side='right'caption='[[1u0n]], [[Resolution|resolution]] 2.95Å' scene=''> | | <StructureSection load='1u0n' size='340' side='right'caption='[[1u0n]], [[Resolution|resolution]] 2.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1u0n]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bothrops_jararaca Bothrops jararaca] and [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U0N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1U0N FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1u0n]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bothrops_jararaca Bothrops jararaca] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U0N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1U0N FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1auq|1auq]], [[1ijb|1ijb]], [[1ijk|1ijk]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">VWF,F8VWF ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), GP1BA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1u0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u0n OCA], [https://pdbe.org/1u0n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1u0n RCSB], [https://www.ebi.ac.uk/pdbsum/1u0n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1u0n ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1u0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u0n OCA], [https://pdbe.org/1u0n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1u0n RCSB], [https://www.ebi.ac.uk/pdbsum/1u0n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1u0n ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/GP1BA_HUMAN GP1BA_HUMAN]] Genetic variations in GP1BA may be a cause of susceptibility to non-arteritic anterior ischemic optic neuropathy (NAION) [MIM:[https://omim.org/entry/258660 258660]]. NAION is an ocular disease due to ischemic injury to the optic nerve. It usually affects the optic disk and leads to visual loss and optic disk swelling of a pallid nature. Visual loss is usually sudden, or over a few days at most and is usually permanent, with some recovery possibly occurring within the first weeks or months. Patients with small disks having smaller or non-existent cups have an anatomical predisposition for non-arteritic anterior ischemic optic neuropathy. As an ischemic episode evolves, the swelling compromises circulation, with a spiral of ischemia resulting in further neuronal damage.<ref>PMID:14711733</ref> Defects in GP1BA are a cause of Bernard-Soulier syndrome (BSS) [MIM:[https://omim.org/entry/231200 231200]]; also known as giant platelet disease (GPD). BSS patients have unusually large platelets and have a clinical bleeding tendency.<ref>PMID:1730088</ref> <ref>PMID:7690774</ref> <ref>PMID:7819107</ref> <ref>PMID:7873390</ref> <ref>PMID:9639514</ref> <ref>PMID:10089893</ref> Defects in GP1BA are the cause of benign mediterranean macrothrombocytopenia (BMM) [MIM:[https://omim.org/entry/153670 153670]]; also known as autosomal dominant benign Bernard-Soulier syndrome. BMM is characterized by mild or no clinical symptoms, normal platelet function, and normal megakaryocyte count.<ref>PMID:11222377</ref> Defects in GP1BA are the cause of pseudo-von Willebrand disease (VWDP) [MIM:[https://omim.org/entry/177820 177820]]. A bleeding disorder is caused by an increased affinity of GP-Ib for soluble vWF resulting in impaired hemostatic function due to the removal of vWF from the circulation.<ref>PMID:14521605</ref> <ref>PMID:2052556</ref> <ref>PMID:8486780</ref> <ref>PMID:8384898</ref> [[https://www.uniprot.org/uniprot/VWF_HUMAN VWF_HUMAN]] Defects in VWF are the cause of von Willebrand disease type 1 (VWD1) [MIM:[https://omim.org/entry/193400 193400]]. A common hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 1 is characterized by partial quantitative deficiency of circulating von Willebrand factor, that is otherwise structurally and functionally normal. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma.<ref>PMID:10887119</ref> <ref>PMID:11698279</ref> Defects in VWF are the cause of von Willebrand disease type 2 (VWD2) [MIM:[https://omim.org/entry/613554 613554]]. A hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 2 is characterized by qualitative deficiency and functional anomalies of von Willebrand factor. It is divided in different subtypes including 2A, 2B, 2M and 2N (Normandy variant). The mutant VWF protein in types 2A, 2B and 2M are defective in their platelet-dependent function, whereas the mutant protein in type 2N is defective in its ability to bind factor VIII. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma. Defects in VWF are the cause of von Willebrand disease type 3 (VWD3) [MIM:[https://omim.org/entry/277480 277480]]. A severe hemorrhagic disorder due to a total or near total absence of von Willebrand factor in the plasma and cellular compartments, also leading to a profound deficiency of plasmatic factor VIII. Bleeding usually starts in infancy and can include epistaxis, recurrent mucocutaneous bleeding, excessive bleeding after minor trauma, and hemarthroses.
| + | [https://www.uniprot.org/uniprot/VWF_HUMAN VWF_HUMAN] Defects in VWF are the cause of von Willebrand disease type 1 (VWD1) [MIM:[https://omim.org/entry/193400 193400]. A common hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 1 is characterized by partial quantitative deficiency of circulating von Willebrand factor, that is otherwise structurally and functionally normal. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma.<ref>PMID:10887119</ref> <ref>PMID:11698279</ref> Defects in VWF are the cause of von Willebrand disease type 2 (VWD2) [MIM:[https://omim.org/entry/613554 613554]. A hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 2 is characterized by qualitative deficiency and functional anomalies of von Willebrand factor. It is divided in different subtypes including 2A, 2B, 2M and 2N (Normandy variant). The mutant VWF protein in types 2A, 2B and 2M are defective in their platelet-dependent function, whereas the mutant protein in type 2N is defective in its ability to bind factor VIII. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma. Defects in VWF are the cause of von Willebrand disease type 3 (VWD3) [MIM:[https://omim.org/entry/277480 277480]. A severe hemorrhagic disorder due to a total or near total absence of von Willebrand factor in the plasma and cellular compartments, also leading to a profound deficiency of plasmatic factor VIII. Bleeding usually starts in infancy and can include epistaxis, recurrent mucocutaneous bleeding, excessive bleeding after minor trauma, and hemarthroses. |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/GP1BA_HUMAN GP1BA_HUMAN]] GP-Ib, a surface membrane protein of platelets, participates in the formation of platelet plugs by binding to the A1 domain of vWF, which is already bound to the subendothelium. [[https://www.uniprot.org/uniprot/VWF_HUMAN VWF_HUMAN]] Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma. [[https://www.uniprot.org/uniprot/LECBB_BOTJA LECBB_BOTJA]] Snaclec that activates platelets by targeting vWF/GPIb. Two-chain botrocetin forms an activated complex with vWF (by binding the A1 domain), and the complex then binds to platelet glycoprotein Ibalpha (GP1BA), resulting in platelet aggregation. There are two distinct forms of the von Willebrand factor-dependent platelet coagglutinin. The dimeric form is 34-times more active than the one-chain botrocetin in promoting vWF binding to platelets. [[https://www.uniprot.org/uniprot/LECBA_BOTJA LECBA_BOTJA]] Snaclec that activates platelets by targeting vWF/GPIb. Two-chain botrocetin forms an activated complex with vWF (by binding the A1 domain), and the complex then binds to platelet glycoprotein Ibalpha (GP1BA), resulting in platelet aggregation. There are two distinct forms of the von Willebrand factor-dependent platelet coagglutinin. The dimeric form is 34-times more active than the one-chain botrocetin in promoting vWF binding to platelets.
| + | [https://www.uniprot.org/uniprot/VWF_HUMAN VWF_HUMAN] Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 17: |
Line 16: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u0/1u0n_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u0/1u0n_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 39: |
Line 38: |
| </StructureSection> | | </StructureSection> |
| [[Category: Bothrops jararaca]] | | [[Category: Bothrops jararaca]] |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Fukuda, K]] | + | [[Category: Fukuda K]] |
- | [[Category: Liddington, R C]] | + | [[Category: Liddington RC]] |
- | [[Category: Blood clotting]]
| + | |
- | [[Category: C-type lectin fold]]
| + | |
- | [[Category: Lrr motif]]
| + | |
- | [[Category: Protein-protein complex]]
| + | |
- | [[Category: Rossmann fold]]
| + | |
| Structural highlights
Disease
VWF_HUMAN Defects in VWF are the cause of von Willebrand disease type 1 (VWD1) [MIM:193400. A common hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 1 is characterized by partial quantitative deficiency of circulating von Willebrand factor, that is otherwise structurally and functionally normal. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma.[1] [2] Defects in VWF are the cause of von Willebrand disease type 2 (VWD2) [MIM:613554. A hemorrhagic disorder due to defects in von Willebrand factor protein and resulting in impaired platelet aggregation. Von Willebrand disease type 2 is characterized by qualitative deficiency and functional anomalies of von Willebrand factor. It is divided in different subtypes including 2A, 2B, 2M and 2N (Normandy variant). The mutant VWF protein in types 2A, 2B and 2M are defective in their platelet-dependent function, whereas the mutant protein in type 2N is defective in its ability to bind factor VIII. Clinical manifestations are mucocutaneous bleeding, such as epistaxis and menorrhagia, and prolonged bleeding after surgery or trauma. Defects in VWF are the cause of von Willebrand disease type 3 (VWD3) [MIM:277480. A severe hemorrhagic disorder due to a total or near total absence of von Willebrand factor in the plasma and cellular compartments, also leading to a profound deficiency of plasmatic factor VIII. Bleeding usually starts in infancy and can include epistaxis, recurrent mucocutaneous bleeding, excessive bleeding after minor trauma, and hemarthroses.
Function
VWF_HUMAN Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Botrocetin is a snake venom protein that enhances the affinity of the A1 domain of plasma von Willebrand factor (vWF) for the platelet receptor glycoprotein Ibalpha (GPIbalpha), an event that contributes to bleeding and host death. Here we describe a kinetic and crystallographic analysis of this interaction that reveals a novel mechanism of affinity enhancement. Using high-temporal-resolution microscopy, we show that botrocetin decreases the GPIbalpha off-rate two-fold in both human and mouse complexes without affecting the on-rate. The key to this behavior is that, upon binding of GPIbalpha to vWF-A1, botrocetin prebound to vWF-A1 makes no contacts initially with GPIbalpha, but subsequently slides around the A1 surface to form a new interface. This two-step mechanism and flexible coupling may prevent adverse alterations in on-rate of GPIbalpha for vWF-A1, and permit adaptation to structural differences in GPIbalpha and vWF in several prey species.
The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation.,Fukuda K, Doggett T, Laurenzi IJ, Liddington RC, Diacovo TG Nat Struct Mol Biol. 2005 Feb;12(2):152-9. Epub 2005 Jan 16. PMID:15665869[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Allen S, Abuzenadah AM, Hinks J, Blagg JL, Gursel T, Ingerslev J, Goodeve AC, Peake IR, Daly ME. A novel von Willebrand disease-causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerization and secretion. Blood. 2000 Jul 15;96(2):560-8. PMID:10887119
- ↑ Bodo I, Katsumi A, Tuley EA, Eikenboom JC, Dong Z, Sadler JE. Type 1 von Willebrand disease mutation Cys1149Arg causes intracellular retention and degradation of heterodimers: a possible general mechanism for dominant mutations of oligomeric proteins. Blood. 2001 Nov 15;98(10):2973-9. PMID:11698279
- ↑ Fukuda K, Doggett T, Laurenzi IJ, Liddington RC, Diacovo TG. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat Struct Mol Biol. 2005 Feb;12(2):152-9. Epub 2005 Jan 16. PMID:15665869 doi:10.1038/nsmb892
|