Sulfide quinone oxidoreductase
From Proteopedia
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | + | __TOC__ | |
==Introduction to SQOR== | ==Introduction to SQOR== | ||
Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. '''Sulfide quinone oxidoreductase''' or '''Sulfide:quinone oxidoreductase''', <scene name='88/881543/Sqor_-_1/1'>SQOR</scene>, is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone <ref name="jackson 1">PMID:30905673</ref>. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism <ref name="landry">PMID:31591036</ref>. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism <ref name="lencina">PMID:23103448</ref>. SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor <ref name="SQOR-1">PMID:22852582</ref>. Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities <ref name="toohey">PMID:25153879</ref>. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor <ref name="jackson 1" />. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism <ref name="jackson 1">PMID:30905673</ref>. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension <ref name="jackson 1"/>. SQOR can also be found in bacteria, producing sulfane sulfur metabolites <ref name="jackson 1">PMID:30905673</ref>. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF <ref name="lencina">PMID:23103448</ref>. The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme. | Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. '''Sulfide quinone oxidoreductase''' or '''Sulfide:quinone oxidoreductase''', <scene name='88/881543/Sqor_-_1/1'>SQOR</scene>, is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone <ref name="jackson 1">PMID:30905673</ref>. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism <ref name="landry">PMID:31591036</ref>. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism <ref name="lencina">PMID:23103448</ref>. SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor <ref name="SQOR-1">PMID:22852582</ref>. Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities <ref name="toohey">PMID:25153879</ref>. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor <ref name="jackson 1" />. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism <ref name="jackson 1">PMID:30905673</ref>. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension <ref name="jackson 1"/>. SQOR can also be found in bacteria, producing sulfane sulfur metabolites <ref name="jackson 1">PMID:30905673</ref>. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF <ref name="lencina">PMID:23103448</ref>. The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme. | ||
Line 26: | Line 26: | ||
- | + | ||
== References == | == References == | ||
<references/> | <references/> | ||
[[Category:Topic Page]] | [[Category:Topic Page]] |
Current revision
Contents |
Introduction to SQOR
Oxidoreductases are used to catalyze the movement of electrons between an oxidant and a reductant. Sulfide quinone oxidoreductase or Sulfide:quinone oxidoreductase, , is an integral membrane protein used in the mitochondria during metabolism to oxidize hydrogen sulfide with assistance from a quinone [1]. This enzyme marks the committed step of the sulfide oxidation pathway. SQOR is also the enzyme involved in the irreversible step of hydrogen sulfide metabolism [2]. In the environment, sulfide is found in aquatic marine environments and in soil but is typically produced by prokaryotes and eukaryotes through catabolism [3]. SQOR uses coenzyme Q as the electron acceptor, and it uses sulfide, sulfite, cyanide, or glutathione as a sulfane acceptor [4]. Sulfane, or thiosulfoxide sulfur, is an essential molecule in the regulation of cellular processes. It has the capabilities to create cofactors as well as modify enzymatic activities [5]. Coenzyme Q is essential for electron transfer in metabolic processes, anabolic and catabolic. In bacterial SQOR, cytochrome C is used as the electron acceptor [1]. The gasotransmitter, hydrogen sulfide or H2S, acts in biological processes and can be used as a target in drug interactions, which can be observed in mitochondrial metabolism [1]. Hydrogen sulfide signaling is used in the cardiovascular system to prevent the development of cardiovascular diseases, such as hypertension [1]. SQOR can also be found in bacteria, producing sulfane sulfur metabolites [1]. In contrast to human SQOR, it does not use a sulfane acceptor. In humans, SQOR belongs to the flavoprotein disulfide reductase (FDR) family (Miller, 2013). SQOR is also in the pyridine nucleotide- disulfide oxidoreductase family. There are also various types of SQORs found, such as SqrA, SqrB, SqrC, SqrD, SqrE, and SqrF [3]. The crystallization method used on this SQOR was vapor diffusion at a pH of 7, which in result, gave indicators of the length and structure of this monumental enzyme.
|