Recombinase A
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 2: | Line 2: | ||
== Function == | == Function == | ||
- | [[Recombinase A]] (RecA), a naturally aggregating protein involved in DNA repair, is an important asset to the genetic integrity of the ''Escherichia coli'' (''E. coli'') genome.<ref name=Shan> Shan, Q.; Cox, M. M.; Inman, R. B. DNA Strand Exchange Promoted by RecA K72R. J. Biol. Chem. 1996, 271, 5712-5724. DOI:10.1074/jbc.271.10.5712 </ref> The survival of all species rely on such DNA repair processes. RecA homologues are found in all kingdoms including archaebacteria, eubacteria, and eukaryotes.<ref name=Brendel> Brendel, V.; Brocchieri, L.; Sandler, S.J.; Clark, A.J.; Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 1997, 44, 528-541. DOI: 10.1007/PL00006177 </ref> Rad51, for example, is a RecA homologue found specifically in humans.<ref name=Baumann> Baumann, P.; Benson, F. E.; West, S. C. Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions in Vitro. Cell. 1996, 87, 757-766. DOI: 10.1016/S0092-8674(00)81394-X </ref> An over-expression of Rad51 in the nuclei of tumor cells when compared to those of normal breast tissue has been linked to sporadic, non-hereditary, breast cancers.<ref name=Maacke> Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W. Krüger, S. Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; Stürzbecher, H.W. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer. 2000, 88, 907-913. DOI: 10.1002/1097-0215(20001215)88:63.0.CO;2-4 </ref> See also [[Isomerases]]. | + | [[Recombinase A]] (RecA), a naturally aggregating protein involved in DNA repair, is an important asset to the genetic integrity of the ''Escherichia coli'' (''E. coli'') genome.<ref name=Shan> Shan, Q.; Cox, M. M.; Inman, R. B. DNA Strand Exchange Promoted by RecA K72R. J. Biol. Chem. 1996, 271, 5712-5724. DOI:10.1074/jbc.271.10.5712 </ref> The survival of all species rely on such DNA repair processes. RecA homologues are found in all kingdoms including archaebacteria, eubacteria, and eukaryotes.<ref name=Brendel> Brendel, V.; Brocchieri, L.; Sandler, S.J.; Clark, A.J.; Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 1997, 44, 528-541. DOI: 10.1007/PL00006177 </ref> Rad51, for example, is a RecA homologue found specifically in humans.<ref name=Baumann> Baumann, P.; Benson, F. E.; West, S. C. Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions in Vitro. Cell. 1996, 87, 757-766. DOI: 10.1016/S0092-8674(00)81394-X </ref> An over-expression of Rad51 in the nuclei of tumor cells when compared to those of normal breast tissue has been linked to sporadic, non-hereditary, breast cancers.<ref name=Maacke> Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W. Krüger, S. Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; Stürzbecher, H.W. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer. 2000, 88, 907-913. DOI: 10.1002/1097-0215(20001215)88:63.0.CO;2-4 </ref> See also [[Isomerases]], [[DNA Repair]]. |
== DNA Repair == | == DNA Repair == | ||
Line 23: | Line 23: | ||
<references/> | <references/> | ||
- | == 3D Structures of Recombinase A == | ||
- | |||
- | Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}} | ||
- | {{#tree:id=OrganizedByTopic|openlevels=0| | ||
- | |||
- | * RecA | ||
- | |||
- | **[[2oe2]], [[2ofo]], [[1ubc]] – ''Mycobacterium smegmatis''<br /> | ||
- | **[[2zr7]] – MsRecA form II’ – MsRecA<br /> | ||
- | **[[2zr0]] – MsRecA (mutant)<br /> | ||
- | **[[2zrb]] - MsRecA (mutant) form II’<br /> | ||
- | **[[2zrn]] - MsRecA (mutant) form IV<br /> | ||
- | **[[2zrc]], [[2zrh]] - MsRecA (mutant) form IV<br /> | ||
- | **[[1n03]], [[2reb]], [[3cmv]], [[4twz]] – EcRecA - ''Escherichia coli''<br /> | ||
- | **[[2rec]] – EcRecA - EM<br /> | ||
- | **[[1aa3]] – EcRecA C-terminal - NMR<br /> | ||
- | **[[1u94]] – EcRecA form II<br /> | ||
- | **[[1u98]] - EcRecA form III<br /> | ||
- | **[[1u99]] - EcRecA form IV<br /> | ||
- | **[[1g19]], [[4oqf]], [[4po1]], [[4po8]], [[4po9]], [[4poa]], [[4ppf]], [[4ppg]], [[4ppn]], [[4ppq]], [[4pqf]], [[4pqr]], [[4pqy]], [[4pr0]], [[4psa]], [[4psk]], [[4psv]], [[4ptl]] – MtRecA - ''Mycobacterium tuberculosis''<br /> | ||
- | **[[3ifj]], [[3igd]] – MtRecA (mutant)<br /> | ||
- | **[[3hr8]] – RecA – ''Thermotoga maritima''<br /> | ||
- | **[[5jrj]] – RecA – ''Herbaspirillum seropedicae''<br /> | ||
- | |||
- | * RecA+nucleotides | ||
- | |||
- | **[[2zr9]] - MsRecA (mutant) form IV+dATP<br /> | ||
- | **[[2zra]] - MsRecA (mutant)+ATPgS<br /> | ||
- | **[[2zrg]], [[2zrl]], [[2zrp]] - MsRecA (mutant) form II’+dATP<br /> | ||
- | **[[2zrd]] - MsRecA (mutant) form IV+ADP<br /> | ||
- | **[[2zre]], [[2zrj]] - MsRecA (mutant) form IV+ATPgS<br /> | ||
- | **[[2zrf]], [[2zrk]], [[2zrm]] - MsRecA (mutant) form IV+dATP<br /> | ||
- | **[[2zri]], [[2zro]] - MsRecA (mutant) form IV+ADP<br /> | ||
- | **[[2odn]], [[2g88]], [[1ubg]] – MsRecA+dATP<br /> | ||
- | **[[2odw]], [[1ubf]] - MsRecA+ATPgS<br /> | ||
- | **[[2oep]], [[1ube]] - MsRecA+ADP<br /> | ||
- | **[[2oes]] - MsRecA+SSB<br /> | ||
- | **[[3cmt]], [[3cmu]], [[3cmw]], [[3cmx]] – EcRecA+SSDNA/DSDNA<br /> | ||
- | **[[1xms]] - EcRecA+Mn+AMP-PNP<br /> | ||
- | **[[1xmv]] - EcRecA+Mg+ADP<br /> | ||
- | **[[1rea]] - EcRecA+ADP<br /> | ||
- | **[[7jy6]], [[7jy7]], [[7jy8]], [[7jy9]] - EcRecA+ DNA + ATPgS – Cryo EM<br /> | ||
- | **[[1xp8]] – RecA+ATPgS – ''Deinococcus radiodurans''<br /> | ||
- | **[[1mo3]] – MtRecA+ADP<br /> | ||
- | **[[1mo4]] - MtRecA+ATPgS<br /> | ||
- | **[[1mo5]] - MtRecA+ATPgS+Mg<br /> | ||
- | **[[1mo6]] - MtRecA+dADP+Mg<br /> | ||
- | **[[1g18]] - MtRecA+ADP+AlF4<br /> | ||
- | **[[5j4j]] - RecA + ADP + ATP - ''Herbaspirillum seropedicae''<br /> | ||
- | }} | ||
[[Category:Topic Page]] | [[Category:Topic Page]] |
Current revision
|
References
- ↑ 1.0 1.1 Shan, Q.; Cox, M. M.; Inman, R. B. DNA Strand Exchange Promoted by RecA K72R. J. Biol. Chem. 1996, 271, 5712-5724. DOI:10.1074/jbc.271.10.5712
- ↑ Brendel, V.; Brocchieri, L.; Sandler, S.J.; Clark, A.J.; Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 1997, 44, 528-541. DOI: 10.1007/PL00006177
- ↑ Baumann, P.; Benson, F. E.; West, S. C. Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions in Vitro. Cell. 1996, 87, 757-766. DOI: 10.1016/S0092-8674(00)81394-X
- ↑ Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W. Krüger, S. Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; Stürzbecher, H.W. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer. 2000, 88, 907-913. DOI: 10.1002/1097-0215(20001215)88:63.0.CO;2-4
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Roca, A. I.; Cox, M. M. RecA Protein: Structure, Function, and Role in Recombinational DNA Repair. Prog. Nucleic Acid Res. Mol. Biol. 1997, 56, 129-223. DOI: 10.1016/S0079-6603(08)61005-3
- ↑ 6.0 6.1 Nayak, S.; Hildebrand, E.L.; Bryant, F.R. ADP-dependent DNA strand exchange by the Mutant RecA protein. J. Biol. Chem.2001, 276, 14933-14938. DOI:10.1074/jbc.M100470200
- ↑ 7.0 7.1 7.2 7.3 Story, R. M.; Weber, I. T.; Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature (London) 1992, 355, 318-325. DOI: 10.1038/355318a0
- ↑ 8.0 8.1 Walker, J. E.; Saraste, M.; Runswick, M. J. Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982, 1, 945-951. PMCID: PMC553140
- ↑ Cox, M. M. Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 2007, 8, 127-138. DOI: 10.1038/nrm2099
- ↑ Sattin, B. D.; Goh, M. C. Novel polymorphism of recA fibrils revealed by Atomic Force Microscopy. J. Biol. Phys. 2006, 32, 153-168. DOI: 10.1007/s10867-006-9010-3
- ↑ 11.0 11.1 11.2 Brenner, S. L.; Zlotnick, A. RecA Protein Self-assembly: Multiple Discrete Aggregation States. J. Mol. Biol. 1988, 204, 959-972. DOI: 10.1016/0022-2836(88)90055-1
- ↑ 12.0 12.1 12.2 Ellouze, C.; Takahashi, M.; Wittung, P.; Mortensen, K.; Schnarr, M.; Nordén, B. Evidence for elongation of helical pitch of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering. Eur. J. Biochem. 1995,233, 579-583. DOI: 10.1111/j.1432-1033.1995.579_2.x
- ↑ 13.0 13.1 13.2 Menetski, J. P.; Kowalczykowski, S. C. Interaction of recA protein with single-stranded DNA: Quantitative aspects of binding affinity modulation by nucleotide cofactors. J. Mol. Biol. 1985, 181, 281-295. DOI: 10.1016/0022-2836(85)90092-0
- ↑ 14.0 14.1 Peukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kruklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational Flexibility of RecA Protein Filament: Transitions between Compressed and Stretched States. Proteins: Struct.,Funct., Bioinf. 2006,65, 296-304. DOI: 10.1002/prot.21116
- ↑ Lusetti, S. L.; Shaw, J. J.; Cox, M. M. Magnesium Ion-dependent Activation of the RecA Protein Involves the C Terminus. J. Biol. Chem. 2003, 278, 16381–16388. DOI: 10.1074/jbc.M212916200
- ↑ Pugh, B. F.; Cox, M. M. High Salt Activation of recA Protein ATPase in the Absence of DNA. J. Biol. Chem.1988, 263, 76-83. PMID: 2826451
- ↑ 17.0 17.1 Cannon, W. R.; Talley, N. D.; Danzig, B. A.; Liu, X. L.; Martinez, J. S.; Shreve, A. P.; MacDonald, G. Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys. Chem. 2012, 163-164, 56-63. DOI: 10.1016/j.bpc.2012.02.005
Proteopedia Page Contributors and Editors (what is this?)
Taylor Light, Michal Harel, Joel L. Sussman, Alexander Berchansky, Jaime Prilusky