7sjy
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
==Crystal structure of Clostridium thermocellum RsgI9 S1C-NTF2 bi-domain== | ==Crystal structure of Clostridium thermocellum RsgI9 S1C-NTF2 bi-domain== | ||
| - | <StructureSection load='7sjy' size='340' side='right'caption='[[7sjy]]' scene=''> | + | <StructureSection load='7sjy' size='340' side='right'caption='[[7sjy]], [[Resolution|resolution]] 2.00Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SJY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SJY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7sjy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetivibrio_thermocellus_DSM_1313 Acetivibrio thermocellus DSM 1313]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SJY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SJY FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7sjy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7sjy OCA], [https://pdbe.org/7sjy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7sjy RCSB], [https://www.ebi.ac.uk/pdbsum/7sjy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7sjy ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7sjy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7sjy OCA], [https://pdbe.org/7sjy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7sjy RCSB], [https://www.ebi.ac.uk/pdbsum/7sjy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7sjy ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/RSGI9_ACET2 RSGI9_ACET2] | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Clostridium thermocellum is actively being developed as a microbial platform to produce biofuels and chemicals from renewable plant biomass. An attractive feature of this bacterium is its ability to efficiently degrade lignocellulose using surface-displayed cellulosomes, large multi-protein complexes that house different types of cellulase enzymes. Clostridium thermocellum tailors the enzyme composition of its cellulosome using nine membrane-embedded anti-sigma factors (RsgI1-9), which are thought to sense different types of extracellular carbohydrates and then elicit distinct gene expression programs via cytoplasmic sigma factors. Here we show that the RsgI9 anti-sigma factor interacts with cellulose via a C-terminal bi-domain unit. A 2.0 A crystal structure reveals that the unit is constructed from S1C peptidase and NTF2-like protein domains that contain a potential binding site for cellulose. Small-angle X-ray scattering experiments of the intact ectodomain indicate that it adopts a bi-lobed, elongated conformation. In the structure, a conserved RsgI extracellular (CRE) domain is connected to the bi-domain via a proline-rich linker, which is expected to project the carbohydrate-binding unit ~160 A from the cell surface. The CRE and proline-rich elements are conserved in several other C. thermocellum anti-sigma factors, suggesting that they will also form extended structures that sense carbohydrates. | ||
| + | |||
| + | The structure of the Clostridium thermocellum RsgI9 ectodomain provides insight into the mechanism of biomass sensing.,Mahoney BJ, Takayesu A, Zhou A, Cascio D, Clubb RT Proteins. 2022 Feb 23. doi: 10.1002/prot.26326. PMID:35194841<ref>PMID:35194841</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 7sjy" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
| + | [[Category: Acetivibrio thermocellus DSM 1313]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Cascio D]] | [[Category: Cascio D]] | ||
[[Category: Clubb RT]] | [[Category: Clubb RT]] | ||
[[Category: Mahoney BJ]] | [[Category: Mahoney BJ]] | ||
Current revision
Crystal structure of Clostridium thermocellum RsgI9 S1C-NTF2 bi-domain
| |||||||||||
