Journal:Acta Cryst D:S2059798322001772

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (13:11, 20 June 2022) (edit) (undo)
 
(39 intermediate revisions not shown.)
Line 1: Line 1:
-
<StructureSection load='' size='450' side='right' scene='underdevelopment' caption=''>
+
<StructureSection load='' size='450' side='right' scene='90/906221/Cv1/1' caption=''>
-
===Crystal structure of the putative cell wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis===
+
===Crystal structure of the putative cell wall lipoglycan biosynthesis protein LmcA from ''Mycobacterium smegmatis''===
-
<big>Dr Paul Crellin</big> <ref>doi: 10.1107/S2059798322001772</ref>
+
<big>Onisha Patel, Rajini Brammananth, Weiwen Dai, Santosh Panjikar, Ross L. Coppel, Isabelle S. Lucet and Paul K. Crellin</big> <ref>doi: 10.1107/S2059798322001772</ref>
<hr/>
<hr/>
<b>Molecular Tour</b><br>
<b>Molecular Tour</b><br>
 +
The bacterium ''Mycobacterium tuberculosis'' infects one-quarter of the entire human population, resulting in more than a million deaths from Tuberculosis each year. In their cell walls, Mycobacteria synthesize abundant, related cell wall glycolipids called phosphatidyl-''myo''-inositol mannosides (PIMs), lipomannans (LMs) and lipoarabinomannans (LAMs), which interact with the infected host. This paper describes the first crystal structure of LmcA, a recently identified Mycobacterial protein that converts PIMs into LMs and LAMs, via an unknown mechanism.
 +
 +
The LmcA structure revealed an elongated beta-barrel fold and one alpha-helix extending away from the beta-barrel core. <scene name='90/906221/Cv/7'>The crystal structure of MSMEG_0317</scene> adopts an extended beta-barrel core composed of 11 antiparallel beta-strands with two alpha-turns and one alpha-helix extending away from the core. The secondary structure elements are shown in distinct colours. Interestingly, <scene name='90/906221/Cv/20'>two distinct cavities</scene> were found inside the protein which could bind a ligand. Further analysis revealed elements in LmcA that may undergo conformational changes to ‘open’ the protein, permitting access to the cavities. <scene name='90/906221/Cv4/6'>Comparison of MSMEG_0317 (white) with MSMEG_0317-Xe (pink) highlights changes in loop 9 conformation to a more "open" state due to xenon binding</scene>. <jmol><jmolButton>
 +
<script>if (_animating); anim pause;set echo bottom left; color echo white; font echo 20 sansserif;echo Animation Paused; else; anim resume; set echo off;endif;</script>
 +
<text>Click here to Stop Animation before next scene.</text>
 +
</jmolButton></jmol> <scene name='90/906221/Cv4/7'>This scene without animation</scene>. While the ligand remains to be identified, comparison of the crystal structure with LmcA models from other bacterial species suggests a common mechanism of ligand binding involving the cavities. These findings provide new structural insights into the biosynthetic pathway for PIM/LM/LAM, essential components of the mycobacterial cell surface.
 +
 +
'''PDB references:''' MSMEG_0317Δ, [[7n3v]]; xenon derivative, [[7shw]].
<b>References</b><br>
<b>References</b><br>

Current revision

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, Jaime Prilusky

This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
Personal tools