7o2o
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
==Lysozyme structure from microfluidic-based in situ data collection== | ==Lysozyme structure from microfluidic-based in situ data collection== | ||
| - | <StructureSection load='7o2o' size='340' side='right'caption='[[7o2o]]' scene=''> | + | <StructureSection load='7o2o' size='340' side='right'caption='[[7o2o]], [[Resolution|resolution]] 1.83Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7O2O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7O2O FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7o2o]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7O2O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7O2O FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7o2o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7o2o OCA], [https://pdbe.org/7o2o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7o2o RCSB], [https://www.ebi.ac.uk/pdbsum/7o2o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7o2o ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.833Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7o2o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7o2o OCA], [https://pdbe.org/7o2o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7o2o RCSB], [https://www.ebi.ac.uk/pdbsum/7o2o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7o2o ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Cyclic-olefin-copolymer (COC)-based microfluidic devices are increasingly becoming the center of highly valuable research for in situ X-ray measurements due to their compatibility with X-rays, biological compounds, chemical resistance, optical properties, low cost, and simplified handling. COC microfluidic devices present potential solutions to challenging biological applications such as protein binding, folding, nucleation, growth kinetics, and structural changes. In recent years, the techniques applied to manufacturing and handling these devices have capitalized on enormous progress toward small-scale sample probing. Here, we describe the new and innovative design aspects, fabrication, and experimental implementation of low-cost and micron-sized X-ray-compatible microfluidic sample environments that address diffusion-based crystal formation for crystallographic characterization. The devices appear fully compatible with crystal growth and subsequent X-ray diffraction experiments, resulting in remarkably low background data recording. The results highlighted in this research demonstrate how the engineered microfluidic devices allow the recording of accurate crystallographic data at room temperature and structure determination at high resolution. | ||
| + | |||
| + | Manufacturing of Ultra-Thin X-ray-Compatible COC Microfluidic Devices for Optimal In Situ Macromolecular Crystallography Experiments.,Vasireddi R, Gardais A, Chavas LMG Micromachines (Basel). 2022 Aug 22;13(8). pii: mi13081365. doi:, 10.3390/mi13081365. PMID:36014287<ref>PMID:36014287</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 7o2o" style="background-color:#fffaf0;"></div> | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
| + | [[Category: Gallus gallus]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Chavas L]] | [[Category: Chavas L]] | ||
[[Category: Gardais A]] | [[Category: Gardais A]] | ||
Current revision
Lysozyme structure from microfluidic-based in situ data collection
| |||||||||||
