|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='3lq5' size='340' side='right'caption='[[3lq5]], [[Resolution|resolution]] 3.00Å' scene=''> | | <StructureSection load='3lq5' size='340' side='right'caption='[[3lq5]], [[Resolution|resolution]] 3.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3lq5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LQ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3LQ5 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3lq5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LQ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3LQ5 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SLQ:(2S)-2-({9-(1-METHYLETHYL)-6-[(4-PYRIDIN-2-YLBENZYL)AMINO]-9H-PURIN-2-YL}AMINO)BUTAN-1-OL'>SLQ</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SLQ:(2S)-2-({9-(1-METHYLETHYL)-6-[(4-PYRIDIN-2-YLBENZYL)AMINO]-9H-PURIN-2-YL}AMINO)BUTAN-1-OL'>SLQ</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3blh|3blh]], [[3blq|3blq]], [[3blr|3blr]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDC2L4, CDK9 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CCNT1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3lq5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lq5 OCA], [https://pdbe.org/3lq5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3lq5 RCSB], [https://www.ebi.ac.uk/pdbsum/3lq5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3lq5 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3lq5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lq5 OCA], [https://pdbe.org/3lq5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3lq5 RCSB], [https://www.ebi.ac.uk/pdbsum/3lq5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3lq5 ProSAT]</span></td></tr> |
| </table> | | </table> |
- | == Disease == | |
- | [[https://www.uniprot.org/uniprot/CDK9_HUMAN CDK9_HUMAN]] Note=Chronic activation of CDK9 causes cardiac myocyte enlargement leading to cardiac hypertrophy, and confers predisposition to heart failure. | |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CDK9_HUMAN CDK9_HUMAN]] Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation.<ref>PMID:9857195</ref> <ref>PMID:10393184</ref> <ref>PMID:10574912</ref> <ref>PMID:10912001</ref> <ref>PMID:10757782</ref> <ref>PMID:11145967</ref> <ref>PMID:11112772</ref> <ref>PMID:11575923</ref> <ref>PMID:11884399</ref> <ref>PMID:11809800</ref> <ref>PMID:12037670</ref> <ref>PMID:15564463</ref> <ref>PMID:14701750</ref> <ref>PMID:17956865</ref> <ref>PMID:18362169</ref> <ref>PMID:19844166</ref> <ref>PMID:19575011</ref> <ref>PMID:20493174</ref> <ref>PMID:20930849</ref> <ref>PMID:20081228</ref> <ref>PMID:20980437</ref> <ref>PMID:21127351</ref> [[https://www.uniprot.org/uniprot/CCNT1_HUMAN CCNT1_HUMAN]] Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II). In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes.
| + | [https://www.uniprot.org/uniprot/CCNT1_HUMAN CCNT1_HUMAN] Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II). In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 31: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Baumli, S]] | + | [[Category: Baumli S]] |
- | [[Category: Endicott, J A]] | + | [[Category: Endicott JA]] |
- | [[Category: Hole, A J]] | + | [[Category: Hole AJ]] |
- | [[Category: Atp-binding]]
| + | |
- | [[Category: Cell cycle]]
| + | |
- | [[Category: Cell division]]
| + | |
- | [[Category: Host-virus interaction]]
| + | |
- | [[Category: Kinase]]
| + | |
- | [[Category: Nucleotide-binding]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Phosphorylated]]
| + | |
- | [[Category: Serine/threonine-protein kinase]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
- | [[Category: Transcription-inhibitor complex]]
| + | |
- | [[Category: Transcriptional cdk-cyclin complex]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
CCNT1_HUMAN Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II). In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes.
Publication Abstract from PubMed
Neuroblastoma (NB), the most frequent extracranial solid tumor of children accounting for nearly 15% of all childhood cancer mortality, displays overexpression of antiapoptotic Bcl-2 and Mcl-1 in aggressive forms of the disease. The clinical phase 2 drug roscovitine (CYC202, seliciclib), a relatively selective inhibitor of cyclin-dependent kinases (CDKs), and CR8, a recently developed and more potent analog, induce concentration-dependent apoptotic cell death of NB cells (average IC(50) values: 24.2 microM and 0.4 microM for roscovitine and CR8, respectively). Both roscovitine and CR8 trigger rapid down-regulation of the short-lived survival factor Mcl-1 in the 9 investigated human NB cell lines. This effect was further analyzed in the human SH-SY5Y NB cell line. Down-regulation of Mcl-1 appears to depend on inhibition of CDKs rather than on interaction of roscovitine and CR8 with their secondary targets. CR8 is an adenosine triphosphate-competitive inhibitor of CDK9, and the structure of a CDK9/cyclin T/CR8 complex is described. Mcl-1 down-regulation occurs both at the mRNA and protein levels. This effect can be accounted for by a reduction in Mcl-1 protein synthesis, under stable Mcl-1 degradation conditions. Mcl-1 down-regulation is accompanied by a transient increase in free Noxa, a proapoptotic factor. Mcl-1 down-regulation occurs independently of the presence or up-regulation of p53 and of the MYCN status. Taken together, these results suggest that the clinical drug roscovitine and its novel analog CR8 induce apoptotic tumor cell death by down-regulating Mcl-1, a key survival factor expressed in all NB cell lines. CDK inhibition may thus constitute a new approach to treat refractory high-risk NB.
CDK Inhibitors Roscovitine and CR8 Trigger Mcl-1 Down-Regulation and Apoptotic Cell Death in Neuroblastoma Cells.,Bettayeb K, Baunbaek D, Delehouze C, Loaec N, Hole AJ, Baumli S, Endicott JA, Douc-Rasy S, Benard J, Oumata N, Galons H, Meijer L Genes Cancer. 2010 Apr;1(4):369-80. PMID:21779453[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bettayeb K, Baunbaek D, Delehouze C, Loaec N, Hole AJ, Baumli S, Endicott JA, Douc-Rasy S, Benard J, Oumata N, Galons H, Meijer L. CDK Inhibitors Roscovitine and CR8 Trigger Mcl-1 Down-Regulation and Apoptotic Cell Death in Neuroblastoma Cells. Genes Cancer. 2010 Apr;1(4):369-80. PMID:21779453 doi:10.1177/1947601910369817
|