|
|
Line 3: |
Line 3: |
| <StructureSection load='3t38' size='340' side='right'caption='[[3t38]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='3t38' size='340' side='right'caption='[[3t38]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3t38]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"micrococcus_glutamicus"_kinoshita_et_al._1958 "micrococcus glutamicus" kinoshita et al. 1958]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3T38 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3T38 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3t38]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Corynebacterium_glutamicum Corynebacterium glutamicum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3T38 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3T38 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D1D:(4S,5S)-1,2-DITHIANE-4,5-DIOL'>D1D</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D1D:(4S,5S)-1,2-DITHIANE-4,5-DIOL'>D1D</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">arsc1 prime, cg1707, Cgl1512 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1718 "Micrococcus glutamicus" Kinoshita et al. 1958])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3t38 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3t38 OCA], [https://pdbe.org/3t38 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3t38 RCSB], [https://www.ebi.ac.uk/pdbsum/3t38 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3t38 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3t38 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3t38 OCA], [https://pdbe.org/3t38 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3t38 RCSB], [https://www.ebi.ac.uk/pdbsum/3t38 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3t38 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q8NQC6_CORGL Q8NQC6_CORGL] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Micrococcus glutamicus kinoshita et al. 1958]] | + | [[Category: Corynebacterium glutamicum]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dufe, T V]] | + | [[Category: Dufe TV]] |
- | [[Category: Messens, J]] | + | [[Category: Messens J]] |
- | [[Category: Wahni, K]] | + | [[Category: Wahni K]] |
- | [[Category: Low molecular weight tyrosine phosphatase fold]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Reduction of arsenate to arsenite]]
| + | |
| Structural highlights
Function
Q8NQC6_CORGL
Publication Abstract from PubMed
Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat) /K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.
Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.,Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J Mol Microbiol. 2011 Nov;82(4):998-1014. doi:, 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27. PMID:22032722[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol Microbiol. 2011 Nov;82(4):998-1014. doi:, 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27. PMID:22032722 doi:10.1111/j.1365-2958.2011.07882.x
|