|
|
(15 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:1hnl.gif|left|200px]] | |
| | | |
- | <!-- | + | ==CRYSTAL STRUCTURE OF A GLUTATHIONYLATED HUMAN LYSOZYME: A FOLDING INTERMEDIATE MIMIC IN THE FORMATION OF A DISULFIDE BOND== |
- | The line below this paragraph, containing "STRUCTURE_1hnl", creates the "Structure Box" on the page.
| + | <StructureSection load='1hnl' size='340' side='right'caption='[[1hnl]], [[Resolution|resolution]] 1.80Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[1hnl]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HNL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HNL FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GSH:GLUTATHIONE'>GSH</scene></td></tr> |
- | {{STRUCTURE_1hnl| PDB=1hnl | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hnl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hnl OCA], [https://pdbe.org/1hnl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hnl RCSB], [https://www.ebi.ac.uk/pdbsum/1hnl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hnl ProSAT]</span></td></tr> |
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hn/1hnl_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hnl ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | The three-dimensional structure of a mutant human lysozyme, C77A-a, in which the residue Cys77 is replaced by alanine, has been refined to an R value of 0.125 using 8230 reflections in the resolution range 10.0-1.8 A. It has been shown that C77A-a, in which the counterpart of Cys77 (Cys95) is modified with glutathione, has been shown to mimic an intermediate in the formation of the disulfide bond Cys77-Cys95 during the folding of human lysozyme [Hayano, Inaka, Otsu, Taniyama, Miki, Matsushima & Kikuchi (1993). FEBS Lett. 328, 203-208]. An earlier structure demonstrates that its overall structure is essentially identical to that of the wild-type protein and served as the starting model. The refined model includes atoms for all protein residues (1-130), 20 glutathione atoms and 113 water atoms. Further refinement shows more clearly the details of the protein, the bound glutathione molecule and solvent structure. However, the main-chain folding and the atomic thermal factors of the loop region from Thr70 to Leu79 were highly affected by the binding of the glutathione molecule, as compared with those of the wild-type protein. The bound glutathione shifted the main-chain atoms from Va174 to Ala77 by more than 6.0 A, and the temperature factors of the atoms in the loop region were quite high (more than 40 A(2)), indicating that the backbone conformation of this region is highly flexible and that the loop region is not folded in the specific conformation observed in the wild-type protein. These results strongly suggest that the loop structure in human lysozyme is folded later than the other regions of the protein in vivo, as observed in in vitro folding. Since the bound glutathione is efficiently and irreversibly dissociated by protein disulfide isomerase, the glutathione molecule may act as a protecting group to prevent the formation of an incorrect disulfide bond in the protein folding process in vivo. |
| | | |
- | '''CRYSTAL STRUCTURE OF A GLUTATHIONYLATED HUMAN LYSOZYME: A FOLDING INTERMEDIATE MIMIC IN THE FORMATION OF A DISULFIDE BOND'''
| + | Structure of a glutathionylated human lysozyme: a folding intermediate mimic in the formation of a disulfide bond.,Inaka K, Miki K, Kikuchi M, Taniyama Y, Matsushima M Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):619-25. PMID:15299791<ref>PMID:15299791</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | The three-dimensional structure of a mutant human lysozyme, C77A-a, in which the residue Cys77 is replaced by alanine, has been refined to an R value of 0.125 using 8230 reflections in the resolution range 10.0-1.8 A. It has been shown that C77A-a, in which the counterpart of Cys77 (Cys95) is modified with glutathione, has been shown to mimic an intermediate in the formation of the disulfide bond Cys77-Cys95 during the folding of human lysozyme [Hayano, Inaka, Otsu, Taniyama, Miki, Matsushima & Kikuchi (1993). FEBS Lett. 328, 203-208]. An earlier structure demonstrates that its overall structure is essentially identical to that of the wild-type protein and served as the starting model. The refined model includes atoms for all protein residues (1-130), 20 glutathione atoms and 113 water atoms. Further refinement shows more clearly the details of the protein, the bound glutathione molecule and solvent structure. However, the main-chain folding and the atomic thermal factors of the loop region from Thr70 to Leu79 were highly affected by the binding of the glutathione molecule, as compared with those of the wild-type protein. The bound glutathione shifted the main-chain atoms from Va174 to Ala77 by more than 6.0 A, and the temperature factors of the atoms in the loop region were quite high (more than 40 A(2)), indicating that the backbone conformation of this region is highly flexible and that the loop region is not folded in the specific conformation observed in the wild-type protein. These results strongly suggest that the loop structure in human lysozyme is folded later than the other regions of the protein in vivo, as observed in in vitro folding. Since the bound glutathione is efficiently and irreversibly dissociated by protein disulfide isomerase, the glutathione molecule may act as a protecting group to prevent the formation of an incorrect disulfide bond in the protein folding process in vivo.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 1HNL is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HNL OCA].
| + | </div> |
| + | <div class="pdbe-citations 1hnl" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Structure of a glutathionylated human lysozyme: a folding intermediate mimic in the formation of a disulfide bond., Inaka K, Miki K, Kikuchi M, Taniyama Y, Matsushima M, Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):619-25. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15299791 15299791]
| + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] |
| + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Lysozyme]] | + | [[Category: Large Structures]] |
- | [[Category: Single protein]]
| + | [[Category: Inaka K]] |
- | [[Category: Inaka, K.]] | + | [[Category: Matsushima M]] |
- | [[Category: Matsushima, M.]] | + | [[Category: Miki K]] |
- | [[Category: Miki, K.]] | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 19:02:44 2008''
| + | |
| Structural highlights
Disease
LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]
Function
LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The three-dimensional structure of a mutant human lysozyme, C77A-a, in which the residue Cys77 is replaced by alanine, has been refined to an R value of 0.125 using 8230 reflections in the resolution range 10.0-1.8 A. It has been shown that C77A-a, in which the counterpart of Cys77 (Cys95) is modified with glutathione, has been shown to mimic an intermediate in the formation of the disulfide bond Cys77-Cys95 during the folding of human lysozyme [Hayano, Inaka, Otsu, Taniyama, Miki, Matsushima & Kikuchi (1993). FEBS Lett. 328, 203-208]. An earlier structure demonstrates that its overall structure is essentially identical to that of the wild-type protein and served as the starting model. The refined model includes atoms for all protein residues (1-130), 20 glutathione atoms and 113 water atoms. Further refinement shows more clearly the details of the protein, the bound glutathione molecule and solvent structure. However, the main-chain folding and the atomic thermal factors of the loop region from Thr70 to Leu79 were highly affected by the binding of the glutathione molecule, as compared with those of the wild-type protein. The bound glutathione shifted the main-chain atoms from Va174 to Ala77 by more than 6.0 A, and the temperature factors of the atoms in the loop region were quite high (more than 40 A(2)), indicating that the backbone conformation of this region is highly flexible and that the loop region is not folded in the specific conformation observed in the wild-type protein. These results strongly suggest that the loop structure in human lysozyme is folded later than the other regions of the protein in vivo, as observed in in vitro folding. Since the bound glutathione is efficiently and irreversibly dissociated by protein disulfide isomerase, the glutathione molecule may act as a protecting group to prevent the formation of an incorrect disulfide bond in the protein folding process in vivo.
Structure of a glutathionylated human lysozyme: a folding intermediate mimic in the formation of a disulfide bond.,Inaka K, Miki K, Kikuchi M, Taniyama Y, Matsushima M Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):619-25. PMID:15299791[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
- ↑ Inaka K, Miki K, Kikuchi M, Taniyama Y, Matsushima M. Structure of a glutathionylated human lysozyme: a folding intermediate mimic in the formation of a disulfide bond. Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):619-25. PMID:15299791 doi:http://dx.doi.org/10.1107/S0907444994013478
|