|
|
Line 3: |
Line 3: |
| <StructureSection load='3zop' size='340' side='right'caption='[[3zop]], [[Resolution|resolution]] 1.61Å' scene=''> | | <StructureSection load='3zop' size='340' side='right'caption='[[3zop]], [[Resolution|resolution]] 1.61Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3zop]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZOP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZOP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3zop]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZOP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZOP FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CIR:CITRULLINE'>CIR</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.61Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3zo8|3zo8]], [[3zp4|3zp4]], [[3zp7|3zp7]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CIR:CITRULLINE'>CIR</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Chorismate_mutase Chorismate mutase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.99.5 5.4.99.5] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zop FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zop OCA], [https://pdbe.org/3zop PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zop RCSB], [https://www.ebi.ac.uk/pdbsum/3zop PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zop ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zop FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zop OCA], [https://pdbe.org/3zop PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zop RCSB], [https://www.ebi.ac.uk/pdbsum/3zop PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zop ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/AROH_BACSU AROH_BACSU]] Catalyzes the Claisen rearrangement of chorismate to prephenate. Probably involved in the aromatic amino acid biosynthesis.<ref>PMID:2105742</ref>
| + | [https://www.uniprot.org/uniprot/AROH_BACSU AROH_BACSU] Catalyzes the Claisen rearrangement of chorismate to prephenate. Probably involved in the aromatic amino acid biosynthesis.<ref>PMID:2105742</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
- | [[Category: Chorismate mutase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Burschowsky, D]] | + | [[Category: Burschowsky D]] |
- | [[Category: Hilvert, D]] | + | [[Category: Hilvert D]] |
- | [[Category: Kast, P]] | + | [[Category: Kast P]] |
- | [[Category: Kienhofer, A]] | + | [[Category: Kienhofer A]] |
- | [[Category: Krengel, U]] | + | [[Category: Krengel U]] |
- | [[Category: Okvist, M]] | + | [[Category: Okvist M]] |
- | [[Category: VanEerde, A]] | + | [[Category: VanEerde A]] |
- | [[Category: Isomerase]]
| + | |
- | [[Category: Pseudo-alpha beta-barrel]]
| + | |
| Structural highlights
Function
AROH_BACSU Catalyzes the Claisen rearrangement of chorismate to prephenate. Probably involved in the aromatic amino acid biosynthesis.[1]
Publication Abstract from PubMed
For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.
Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.,Burschowsky D, van Eerde A, Okvist M, Kienhofer A, Kast P, Hilvert D, Krengel U Proc Natl Acad Sci U S A. 2014 Nov 24. pii: 201408512. PMID:25422475[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gray JV, Golinelli-Pimpaneau B, Knowles JR. Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli. Biochemistry. 1990 Jan 16;29(2):376-83. PMID:2105742
- ↑ Burschowsky D, van Eerde A, Okvist M, Kienhofer A, Kast P, Hilvert D, Krengel U. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis. Proc Natl Acad Sci U S A. 2014 Nov 24. pii: 201408512. PMID:25422475 doi:http://dx.doi.org/10.1073/pnas.1408512111
|