7ph2
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
==Nanodisc reconstituted MsbA in complex with nanobodies, spin-labeled at position A60C== | ==Nanodisc reconstituted MsbA in complex with nanobodies, spin-labeled at position A60C== | ||
| - | <StructureSection load='7ph2' size='340' side='right'caption='[[7ph2]]' scene=''> | + | <StructureSection load='7ph2' size='340' side='right'caption='[[7ph2]], [[Resolution|resolution]] 3.70Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7PH2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7PH2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7ph2]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Vicugna_pacos Vicugna pacos]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7PH2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7PH2 FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ph2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ph2 OCA], [https://pdbe.org/7ph2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ph2 RCSB], [https://www.ebi.ac.uk/pdbsum/7ph2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ph2 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.7Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=88T:(1~{R},4~{R},11~{S},14~{S},19~{Z})-19-[2-[2,5-bis(oxidanylidene)pyrrolidin-1-yl]ethylimino]-7,8,17,18-tetraoxa-1,4,11,14-tetrazatricyclo[12.6.2.2^{4,11}]tetracosane-6,9,16-trione'>88T</scene>, <scene name='pdbligand=EIW:(2~{R},4~{R},5~{R},6~{R})-6-[(1~{R})-1,2-bis(oxidanyl)ethyl]-4-[(2~{R},3~{S},4~{S},5~{R},6~{R})-6-[(1~{S})-1,2-bis(oxidanyl)ethyl]-4-[(2~{R},3~{S},4~{S},5~{S},6~{R})-6-[(1~{S})-1,2-bis(oxidanyl)ethyl]-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-3,5-bis(oxidanyl)oxan-2-yl]oxy-2-[[(2~{R},3~{S},4~{R},5~{R},6~{R})-4-[(3~{R})-3-nonanoyloxytetradecanoyl]oxy-5-[[(3~{R})-3-octanoyloxytetradecanoyl]amino]-6-[[(2~{R},3~{S},4~{S},5~{S},6~{R})-3-oxidanyl-5-[[(3~{R})-3-oxidanylnonanoyl]amino]-4-[(3~{R})-3-oxidanyltetradecanoyl]oxy-6-phosphonooxy-oxan-2-yl]methoxy]-3-phosphonooxy-oxan-2-yl]methoxy]-5-oxidanyl-oxane-2-carboxylic+acid'>EIW</scene>, <scene name='pdbligand=GD:GADOLINIUM+ATOM'>GD</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ph2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ph2 OCA], [https://pdbe.org/7ph2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ph2 RCSB], [https://www.ebi.ac.uk/pdbsum/7ph2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ph2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/MSBA_ECOLI MSBA_ECOLI] Involved in lipid A export and possibly also in glycerophospholipid export and for biogenesis of the outer membrane. Transmembrane domains (TMD) form a pore in the inner membrane and the ATP-binding domain (NBD) is responsible for energy generation. | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells. | ||
| + | |||
| + | The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells.,Galazzo L, Meier G, Januliene D, Parey K, De Vecchis D, Striednig B, Hilbi H, Schafer LV, Kuprov I, Moeller A, Bordignon E, Seeger MA Sci Adv. 2022 Oct 14;8(41):eabn6845. doi: 10.1126/sciadv.abn6845. Epub 2022 Oct , 12. PMID:36223470<ref>PMID:36223470</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 7ph2" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
| + | [[Category: Escherichia coli K-12]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
| + | [[Category: Vicugna pacos]] | ||
[[Category: Bordignon E]] | [[Category: Bordignon E]] | ||
[[Category: Galazzo L]] | [[Category: Galazzo L]] | ||
Current revision
Nanodisc reconstituted MsbA in complex with nanobodies, spin-labeled at position A60C
| |||||||||||
Categories: Escherichia coli K-12 | Large Structures | Vicugna pacos | Bordignon E | Galazzo L | Hilbi H | Januliene D | Kuprov I | Meier G | Moeller A | Parey K | Schaefer LV | Seeger MA | Striednig B | Vecchis D
