8dgc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:08, 14 May 2025) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
==Avs3 bound to phage PhiV-1 terminase==
==Avs3 bound to phage PhiV-1 terminase==
-
<StructureSection load='8dgc' size='340' side='right'caption='[[8dgc]]' scene=''>
+
<StructureSection load='8dgc' size='340' side='right'caption='[[8dgc]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DGC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DGC FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[8dgc]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_phage_PhiV-1 Escherichia phage PhiV-1] and [https://en.wikipedia.org/wiki/Salmonella_enterica Salmonella enterica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DGC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DGC FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dgc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dgc OCA], [https://pdbe.org/8dgc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dgc RCSB], [https://www.ebi.ac.uk/pdbsum/8dgc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dgc ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dgc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dgc OCA], [https://pdbe.org/8dgc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dgc RCSB], [https://www.ebi.ac.uk/pdbsum/8dgc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dgc ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/A0A7G3WWS0_9CAUD A0A7G3WWS0_9CAUD] The terminase large subunit acts as an ATP driven molecular motor necessary for viral DNA translocation into empty capsids and as an endonuclease that cuts the viral genome at a unique and precise dsDNA sequence to initiate and to end a packaging reaction. The terminase lies at a unique vertex of the procapsid and is composed of two subunits, a small terminase subunit involved in viral DNA recognition (packaging sequence), and a large terminase subunit possessing endonucleolytic and ATPase activities. Both terminase subunits heterooligomerize and are docked on the portal protein to form the packaging machine. The terminase large subunit exhibits endonuclease activity and cleaves the viral genome concatemer. Once the DNA is packaged, the terminase detaches from the portal and gets replaced by the tail to finish maturation of the virion.[HAMAP-Rule:MF_04147]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.
 +
 +
Prokaryotic innate immunity through pattern recognition of conserved viral proteins.,Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, Koonin EV, Zhang F Science. 2022 Aug 12;377(6607):eabm4096. doi: 10.1126/science.abm4096. Epub 2022 , Aug 12. PMID:35951700<ref>PMID:35951700</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 8dgc" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Terminase 3D Structures|Terminase 3D Structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Escherichia phage PhiV-1]]
[[Category: Large Structures]]
[[Category: Large Structures]]
 +
[[Category: Salmonella enterica]]
[[Category: Gao L]]
[[Category: Gao L]]
[[Category: Koonin EV]]
[[Category: Koonin EV]]

Current revision

Avs3 bound to phage PhiV-1 terminase

PDB ID 8dgc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools