7m6n
From Proteopedia
(Difference between revisions)
| (One intermediate revision not shown.) | |||
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7m6n]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Danio_rerio Danio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7M6N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7M6N FirstGlance]. <br> | <table><tr><td colspan='2'>[[7m6n]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Danio_rerio Danio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7M6N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7M6N FirstGlance]. <br> | ||
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLY:GLYCINE'>GLY</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.61Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLY:GLYCINE'>GLY</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7m6n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7m6n OCA], [https://pdbe.org/7m6n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7m6n RCSB], [https://www.ebi.ac.uk/pdbsum/7m6n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7m6n ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7m6n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7m6n OCA], [https://pdbe.org/7m6n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7m6n RCSB], [https://www.ebi.ac.uk/pdbsum/7m6n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7m6n ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
| - | + | [https://www.uniprot.org/uniprot/GLRA1_DANRE GLRA1_DANRE] Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine (PubMed:10188956, PubMed:26344198). Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol (By similarity).[UniProtKB:P23415]<ref>PMID:10188956</ref> <ref>PMID:26344198</ref> | |
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore. | Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore. | ||
| - | + | , PMID:35982060<ref>PMID:35982060</ref> | |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
Current revision
Full length alpha1 Glycine receptor in presence of 0.1mM Glycine
| |||||||||||
