8h3s

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:59, 30 October 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 8h3s is ON HOLD
+
==Substrate-bound EP, polyA model==
 +
<StructureSection load='8h3s' size='340' side='right'caption='[[8h3s]], [[Resolution|resolution]] 4.90&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[8h3s]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8H3S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8H3S FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.9&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8h3s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8h3s OCA], [https://pdbe.org/8h3s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8h3s RCSB], [https://www.ebi.ac.uk/pdbsum/8h3s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8h3s ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/ENTK_HUMAN ENTK_HUMAN] Congenital enteropathy due to enteropeptidase deficiency. The disease is caused by mutations affecting the gene represented in this entry.
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ENTK_HUMAN ENTK_HUMAN] Responsible for initiating activation of pancreatic proteolytic proenzymes (trypsin, chymotrypsin and carboxypeptidase A). It catalyzes the conversion of trypsinogen to trypsin which in turn activates other proenzymes including chymotrypsinogen, procarboxypeptidases, and proelastases.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Enteropeptidase (EP) initiates intestinal digestion by proteolytically processing trypsinogen, generating catalytically active trypsin. EP dysfunction causes a series of pancreatic diseases including acute necrotizing pancreatitis. However, the molecular mechanisms of EP activation and substrate recognition remain elusive, due to the lack of structural information on the EP heavy chain. Here, we report cryo-EM structures of human EP in inactive, active, and substrate-bound states at resolutions from 2.7 to 4.9 A. The EP heavy chain was observed to clamp the light chain with CUB2 domain for substrate recognition. The EP light chain N-terminus induced a rearrangement of surface-loops from inactive to active conformations, resulting in activated EP. The heavy chain then served as a hinge for light-chain conformational changes to recruit and subsequently cleave substrate. Our study provides structural insights into rearrangements of EP surface-loops and heavy chain dynamics in the EP catalytic cycle, advancing our understanding of EP-associated pancreatitis.
-
Authors: Ding, Z.Y., Huang, H.J.
+
Cryo-EM structures reveal the activation and substrate recognition mechanism of human enteropeptidase.,Yang X, Ding Z, Peng L, Song Q, Zhang D, Cui F, Xia C, Li K, Yin H, Li S, Li Z, Huang H Nat Commun. 2022 Nov 14;13(1):6955. doi: 10.1038/s41467-022-34364-9. PMID:36376282<ref>PMID:36376282</ref>
-
Description: Substrate-bound EP, polyA model
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Huang, H.J]]
+
<div class="pdbe-citations 8h3s" style="background-color:#fffaf0;"></div>
-
[[Category: Ding, Z.Y]]
+
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Ding ZY]]
 +
[[Category: Huang HJ]]

Current revision

Substrate-bound EP, polyA model

PDB ID 8h3s

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools