7vpu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:08, 6 November 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7vpu]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Lachancea_thermotolerans_CBS_6340 Lachancea thermotolerans CBS 6340]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7VPU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7VPU FirstGlance]. <br>
<table><tr><td colspan='2'>[[7vpu]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Lachancea_thermotolerans_CBS_6340 Lachancea thermotolerans CBS 6340]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7VPU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7VPU FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ERG:ERGOSTEROL'>ERG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.59&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ERG:ERGOSTEROL'>ERG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7vpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7vpu OCA], [https://pdbe.org/7vpu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7vpu RCSB], [https://www.ebi.ac.uk/pdbsum/7vpu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7vpu ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7vpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7vpu OCA], [https://pdbe.org/7vpu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7vpu RCSB], [https://www.ebi.ac.uk/pdbsum/7vpu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7vpu ProSAT]</span></td></tr>
</table>
</table>
Line 13: Line 14:
Fungal transcription factor Upc2 senses ergosterol levels and regulates sterol biosynthesis and uptake. Constitutive activation of Upc2 causes azole resistance in Candida species. We determined the structure of ergosterol-bound Upc2, revealing the ligand specificity and transcriptional regulation. Ergosterol binding involves conformational changes of the ligand-binding domain, creating a shape-complementary hydrophobic pocket. The conserved helix alpha12 and glycine-rich loop are critical for sterol recognition by forming the pocket wall. The mutations of the glycine-rich loop inhibit ligand binding by steric clashes and constitutively activate Upc2. The translocation of Upc2 is regulated by Hsp90 chaperone in a sterol-dependent manner. Ergosterol-bound Upc2 associates with Hsp90 using the C-terminal tail, which retains the inactive Upc2 in the cytosol. Ergosterol dissociation induces a conformational change of the C-terminal tail, releasing Upc2 from Hsp90 for nuclear transport by importin alpha. The understanding of the regulatory mechanism provides an antifungal target for the treatment of azole-resistant Candida infections.
Fungal transcription factor Upc2 senses ergosterol levels and regulates sterol biosynthesis and uptake. Constitutive activation of Upc2 causes azole resistance in Candida species. We determined the structure of ergosterol-bound Upc2, revealing the ligand specificity and transcriptional regulation. Ergosterol binding involves conformational changes of the ligand-binding domain, creating a shape-complementary hydrophobic pocket. The conserved helix alpha12 and glycine-rich loop are critical for sterol recognition by forming the pocket wall. The mutations of the glycine-rich loop inhibit ligand binding by steric clashes and constitutively activate Upc2. The translocation of Upc2 is regulated by Hsp90 chaperone in a sterol-dependent manner. Ergosterol-bound Upc2 associates with Hsp90 using the C-terminal tail, which retains the inactive Upc2 in the cytosol. Ergosterol dissociation induces a conformational change of the C-terminal tail, releasing Upc2 from Hsp90 for nuclear transport by importin alpha. The understanding of the regulatory mechanism provides an antifungal target for the treatment of azole-resistant Candida infections.
-
Structural basis for activation of fungal sterol receptor Upc2 and azole resistance.,Tan L, Chen L, Yang H, Jin B, Kim G, Im YJ Nat Chem Biol. 2022 Oct 13. pii: 10.1038/s41589-022-01117-0. doi:, 10.1038/s41589-022-01117-0. PMID:36229681<ref>PMID:36229681</ref>
+
Structural basis for activation of fungal sterol receptor Upc2 and azole resistance.,Tan L, Chen L, Yang H, Jin B, Kim G, Im YJ Nat Chem Biol. 2022 Nov;18(11):1253-1262. doi: 10.1038/s41589-022-01117-0. Epub , 2022 Oct 13. PMID:36229681<ref>PMID:36229681</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Crystal structure of the ligand-binding domain of L. thermotolerans Upc2 in complex with ergosterol

PDB ID 7vpu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools